$\operatorname{eg}\left(\left(\operatorname{in} \mathbb{R}^{2}\right) \quad \omega=M d x+N d y \quad(M=M(x, y), N=N(x, y))\right.$
then

$$
\begin{aligned}
d \omega & =d M \wedge d x+d N \wedge d y \\
& =\left(M_{x} d x+M_{y} d y\right) \wedge d x+\left(N_{x} d x+N_{y} d y\right) \wedge d y \\
& =\left(N_{x}-M_{y}\right) d x \wedge d y
\end{aligned}
$$

In this notation, Green's Thu $\oint_{C=\partial R} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d x d y$,
car be written as

$$
\oint_{C=\partial R} \omega=\iint_{R} d \omega
$$

Remark: If we let $\vec{F}=M \hat{i}+N \hat{j} \leftrightarrow \omega=M d x+N d y$ then $\begin{aligned} &(\vec{\nabla} \times \vec{F}) \circ \hat{n} d A=\left(M_{x}-M_{y}\right) \underbrace{\hat{\hat{n}})}_{\substack{\hat{\imath} \\(\hat{n} \cdot \hat{n} d A}}=d \omega \\ & d \times \wedge d y\end{aligned}$ and if we use
 then $\hat{k} \cdot \hat{n} d A=-d x \wedge d y$

Hence

$$
\hat{k} \cdot \hat{n} d A= \begin{cases}d x \wedge d y & \text { if } \hat{n}=\hat{k} \\ d y \wedge d x & \text { if } \hat{n}=-\hat{k}\end{cases}
$$

(orientation of the "smface")
eg: $\quad \zeta=\zeta_{1} d y \wedge d z+\zeta_{2} d z \wedge d x+\zeta_{3} d x \wedge d y$
Then $d \xi=d s_{1} \wedge d y \wedge d z+d s_{2} \wedge d z \wedge d x+d s_{3} \wedge d x \wedge d y$

$$
\begin{aligned}
& =\left(\frac{\partial \xi_{1} d x}{\partial x}+\cdots\right) \wedge d y_{\wedge} d z \\
& \\
& \quad+\left(\cdots+\frac{\partial \zeta_{2}}{\partial y} d y+\cdots\right) \wedge d z \wedge d x \\
& \\
& \quad+\left(\cdots+\frac{\partial \zeta_{3}}{\partial z} d z\right) \wedge d x \wedge d y \\
& =\left(\frac{\partial \zeta_{1}}{\partial x}+\frac{\partial \zeta_{2}}{\partial y}+\frac{\partial \zeta_{3}}{\partial z}\right) d x \wedge d y \wedge d z \\
& = \\
& \operatorname{div} \vec{F} d x \wedge d y \wedge d z
\end{aligned}
$$

where $\vec{F}=S_{1} \hat{i}+S_{2} \hat{j}+S_{3} \hat{k}$
Hence the diungence thenem can be written as:

$$
\begin{aligned}
& \iiint_{D} d \zeta=\iiint_{D}\left(\frac{\partial \xi_{1}}{\partial x}+\frac{\partial \xi_{2}}{\partial y}+\frac{\partial \xi_{3}}{\partial z}\right) \underbrace{d x \wedge d y \wedge d z}_{\text {人 }} \quad \text { (eve) oriented volume } \\
& \text { element }
\end{aligned}
$$

To see the relation between $\vec{F} \cdot \hat{n} d \sigma$ and S, we parametrize S :

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{r}(u, v)=x(u, v) \hat{i}+y(u, v) \hat{j}+z(u, v) \hat{k} \\
\Rightarrow & \left\{\begin{array}{l}
\vec{r}_{u}=x_{u} \vec{i}+y_{u} \hat{j}+z_{u} \hat{k} \\
\vec{r}_{v}=x_{v} \hat{i}+y_{v} \hat{j}+z_{v} \hat{k}
\end{array}\right.
\end{aligned}
$$

$$
\Rightarrow \vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ll}
y_{u} & y_{v} \\
z_{u} & z_{v}
\end{array}\right| \hat{i}+\left|\begin{array}{ll}
z_{u} & z_{v} \\
x_{u} & x_{v}
\end{array}\right| \hat{j}+\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| \hat{k}
$$

If $\vec{r}_{u} \times \vec{r}_{v}$ is outward, then

$$
\begin{aligned}
& \begin{aligned}
\hat{n}=\frac{\stackrel{\rightharpoonup}{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{u}\right|} \text { and } \\
\begin{aligned}
d \sigma & =\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v \\
& =\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u \wedge d v
\end{aligned}
\end{aligned} . \begin{array}{c}
\text { correct } \\
\text { crenation) }
\end{array}
\end{aligned}
$$

then $\vec{F} \cdot \hat{n} d \sigma=\vec{F} \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left|\vec{r}_{\mu} \times \frac{\vec{r}_{v}}{}\right| d u \wedge d v$

$$
\begin{aligned}
& =\left(\zeta_{1} \frac{\partial(y, z)}{\partial(u, v)}+\zeta_{2} \frac{\partial(z, x)}{\partial(u, v)}+\zeta_{3} \frac{\partial(x, y)}{\partial(u, v)}\right) d u \wedge d v \\
& =\zeta_{1} d y \wedge d z+\zeta_{2} d z \wedge d x+\zeta_{3} d x \wedge d y \\
& =\zeta
\end{aligned}
$$

$$
\begin{aligned}
\therefore \iint_{S} \vec{F} \bullet \hat{n} d \sigma & =\iint_{(u, u)} \zeta_{1} d y \wedge d z+\zeta_{2} d z \wedge d x+\zeta_{3} d x \wedge d y \\
& =\iint_{S=\partial \emptyset} \zeta
\end{aligned}
$$

Hence divergence Him is

$$
\iiint_{D} d \zeta=\iint_{S=\partial D} \zeta \quad \quad \zeta=z-\text { fam }
$$

eg3 Stohes' Thn

$$
\vec{F}=M \hat{i}+N \hat{j}+L \hat{k} \leftrightarrow \omega=M d x+N d y+L d z
$$

Then $d w=\left(L_{y}-N_{z}\right) d y \wedge d z$

$$
\begin{aligned}
+\left(M_{z}-L_{x}\right) & d z_{1} d x \\
& +\left(N_{x}-M_{y}\right) d x \wedge d y
\end{aligned}
$$

(Ex!)

$$
=(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma \quad\left(E_{x}!\right)
$$

strkes'Thm becouss

$$
\oint_{C=d S} \vec{F} \cdot d \vec{r} \longrightarrow \oint_{C=2 S} \omega=\iint_{S} d \omega \longleftarrow \int_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
$$

Genmalization to manifold of n-dimension with boundary (Skipped)

- $M=n$ dim'l Manifold (oriented)
- $\partial M=$ boundary (oriented with "induced" orientation)
- $\omega=(n-1)$ - fam on M (smooth)

Then
$\int_{M} d \omega=\int_{\partial M} \omega$

n
n-din'l
nutegral
:---:
integral

Note: ∂M is always closed, ie no boundary.

$$
\therefore \partial(\partial M)=\partial^{2} M=0
$$

boundary has no boundary
 ∂S is a closed cove

Hance if $\omega=d \eta$, for sone $(n-2)-$ fan η,
then

$$
\begin{aligned}
\int_{M} d(d \eta) & =\int_{M} d \omega=\int_{\partial M} \omega \\
& =\int_{\partial M} d \eta=\int_{\partial(\partial M)} \eta=0 \quad(f u \text { awe } \eta .)
\end{aligned}
$$

This suggests $d^{2} \eta=0$, \forall differential fam η

Ex: Verify tins fr 0 -fam and $1-$ fam $\bar{u} \mathbb{R}_{3}^{3}$ and observes that these are just

$$
\begin{cases}\vec{\nabla} \times \vec{\nabla} f=\overrightarrow{0} & \left(d^{2} f=0\right) \\ \vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0 & \left(d^{2} w=0\right)\end{cases}
$$

eq: Let $\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
check: $d \omega=0$
But $\omega \neq d f$ fa amy smooth function on $\mathbb{R}^{2} \backslash\{(0)$,
(süce $\omega=d \theta$ and θ is not defused on $\mathbb{R}^{2}(\{(0,0)\})$

Hence $\begin{gathered}d \omega=0 \nRightarrow \omega=d \eta \quad \text { in geveral } \\ (\Leftarrow)\end{gathered}$

Note: Thulo can be writter as:
$\Omega \subset \mathbb{R}^{2}$ sumply-councted, then
$d \omega=0 \Leftrightarrow \omega=d f \quad$ for some sumosti fuerction f on Ω

Review
Double integrals

- Riemann sum, integrability, Fubini's Tho,
- Polar condinates, improper integrals
- Applications: area, average, etc.

Triple integrals

- Riemann sum, integrability, Fubini's Thy,
- Cylindrical \& spherical condinates, improper integrals
- Applications : volume, average, etc

Change of Variables

- Chain Rule, Jacobian (determinant)

Vector Analysis

- Vecta fields, gradient of a function ($\vec{\nabla} f$)
- line integral of functions, arc-length
- line integral of vector fields: flow \& flux
- sumple-closed curves, orientation of curves
- Conservative vector fields (This 8, 9 \& 10)
- Simply-connected domains
- Curl \& Div $(\vec{\nabla} \times \vec{F}, \vec{\nabla} \cdot \vec{F})$
- Surface integrals, area elements, orientation,
- Surface integrals of vecta fields (flux)
- Green's, Stokes' \& Divergence Thu
- Differential Farms

Final Exam $\operatorname{Dec} 22$ (Fri) $12: 30-2: 30$ U Gym

Coverage: All material in lecture notes, tutorial notes, textbook (Ch 15, 16) \& homework assignments,

- except differential farms
- emphasis on those material not included in Midterm.
- 6 questions, answer all. Some are unfamiliar/difficult questions as required by the grade descriptor of A range,
(Note: Textbook \& assignments contain only basic theory)

