Unified treatment of Green's, Stones', and Divergence Thenems
stokes' Tho in notations of differential farms $\left(i n \mathbb{R}^{3}\right)$
Waken defuiition of differential farms
(1) A differential 1 -form (or sūuply 1-fam)
is a linear combination of the symbols $d x, d y \& d z$:

$$
\omega=\omega_{1} d x+\omega_{2} d y+\omega_{3} d z
$$

with coefficients $\omega_{1}, \omega_{2}, \omega_{3}$ functions on \mathbb{R}^{3}.
eg: The total differential of a smooth function f is a differential 1-fam:

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

(2) Wedge product : Let " \wedge " be an operation such that

$$
\left\{\begin{array}{l}
d x \wedge d x=d y \wedge d y=d z \wedge d z=0 \\
d x \wedge d y=-d y \wedge d x \\
d y \wedge d z=-d z \wedge d y \\
d z \wedge d x=-d x \wedge d z
\end{array}\right.
$$

and satisfies other casual rules in arithentic.

$$
\text { ir. If } \begin{aligned}
\omega & =\omega_{1} d x+\omega_{2} d y+\omega_{3} d z \\
\eta & =\eta_{1} d x+\eta_{2} d y+\eta_{3} d z
\end{aligned}
$$

then we have

$$
\begin{aligned}
\omega \wedge \wedge \eta= & \left(\omega_{1} d x+\omega_{2} d y+\omega_{3} d z\right) \wedge\left(\eta_{1} d x+\eta_{2} d y+\eta_{3} d z\right) \\
= & \omega_{1} d x \wedge \eta_{1} d x+\omega_{2} d y \wedge \eta_{1} d x+\omega_{3} d z \wedge \eta_{1} d x \\
& +\omega_{1} d x \wedge \eta_{2} d y+\omega_{2} d y \wedge \eta_{2}^{0} d y+\omega_{3} d z \wedge \eta_{2} d y \\
& +\omega_{1} d x \wedge \eta_{3} d z+\omega_{2} d y_{1} \eta_{3} d z+\omega_{3} d z \wedge \eta_{3}^{0} d z \\
= & \left(\omega_{1} \eta_{2}-\omega_{2} \eta_{1}\right) d x \wedge d y \\
& +\left(\omega_{2} \eta_{3}-\omega_{3} \eta_{2}\right) d y \wedge d z \\
& +\left(\omega_{3} \eta_{1}-\omega_{1} \eta_{3}\right) d z \wedge d x \\
\therefore \quad & +\left(\omega_{1} \eta_{2}-\omega_{2} \eta_{1}\right) d x \wedge d y
\end{aligned}
$$

- Linear combinations of $d y \wedge d z, d z \wedge d x \& d x \wedge d y$ are called differential 2-fams (on \mathbb{R}^{3})

$$
\zeta=\zeta_{1} d y \wedge d z+\zeta_{2} d z \wedge d x+\zeta_{3} d x \wedge d y
$$

Similarly, if w is a 1 -fam and

$$
\zeta \text { is a } 2 \text {-fam }
$$

then we can define w ns
eg: If $\omega=d x, \quad \zeta=d y \wedge d z$
then $\omega \wedge \zeta=d x \wedge d y \wedge d z$
Note that we insist on the auti-commutativity of wedge product, we have

$$
\begin{aligned}
d x \wedge d y \wedge d z & =-d y \wedge d x \wedge d z \\
& =d y \wedge d z \wedge d x \\
& =-d z \wedge d y \wedge d x \\
& =d z \wedge d x \wedge d y \\
& =-d x \wedge d z \wedge d y
\end{aligned}
$$

And $\quad d x \wedge d x \wedge d y=\cdots=0$ whenever one of the $d x, d y, d z$ repeated.

Hence, as dim $\mathbb{R}^{3}=3$, all "linear combinations" of " 3 -fans" are just $f d x \wedge d y \wedge d z$
which is called a differential 3-fum (also called a volume fam if $f>0$)

Note: It is convenient to call smooth functions f the differential 0 -form.

Summary $\left(o n \mathbb{R}^{3}\right)$

$$
\begin{aligned}
& 0 \text { - fam = } \\
& 1-\text { fam }=\omega_{1} d x+\omega_{2} d y+\omega_{3} d z \\
& z \text {-form: } \quad \zeta_{1} d y \wedge d z+\zeta_{2} d z \wedge d x+\zeta_{3} d x \wedge d y \\
& 3 \text {-form }=\quad g d x \wedge d y \wedge d z
\end{aligned}
$$

where, f, g, ω_{0}, s_{i} are (smooth) functions
Note $=$ One can certainly define k-farm fa any $k \geqslant 0$. But in
\mathbb{R}^{3}, k-forms are zero fa $k>3$:
$d x^{i} \wedge d x \wedge d y \wedge d z=0$, where $d x^{i}=d x, d y, a d z$.

Change of Variables Formula: $\left(\mathbb{R}^{2}\right)$

$$
\left.\left.\begin{array}{rl}
\left\{\begin{array}{l}
x \\
= \\
y
\end{array}=y(u, u)\right.
\end{array}\right] \begin{array}{ll}
d x & =x_{u} d u+x_{v} d v \\
d y & =y_{u} d u+y_{v} d v
\end{array}\right] \begin{aligned}
d x \wedge d y & =\left(x_{u} d u+x_{v} d v\right) \wedge\left(y_{u} d u+y_{v} d v\right) \\
& =\left(x_{u} y_{v}-x_{v} y_{u}\right) d u \wedge d v \\
& =\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| d u \wedge d v
\end{aligned}
$$

$$
d x \wedge d y=\frac{\partial(x, y)}{\partial(u, v)} d u \wedge d v
$$

Hence naturally
\star Jacobian determinant.

$$
\iint f(x, y) d x \wedge d y=\iint f(x(u, v), y(u, v)) \frac{\partial(x, y)}{\partial(u, v)} d u \wedge d v
$$

Compare with

$$
\iint f(x, y) d x d y=\iint f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Similarly far $\left\{\begin{array}{l}x=x(u, v, \omega) \\ y=y(u, v, \omega) \\ z=z(u, v, \omega)\end{array}\right.$

$$
d x \wedge d y \wedge d z=\frac{\partial(x, y, z)}{\partial(u, v, w)} d u \wedge d v \wedge d w \quad \quad(E x!)
$$

$\left(u \sin 5 d x=x_{u} d u+x_{v} d v+x_{w} d w, \cdots\right)$

- "Oriented" change of variables fumula
" "dx^dy" ciented area element
- "dx^dy^dz" criented volume element.
(see later remark)

Exterin differentiation "d" on a fam " w ".

$$
\text { ego } d(d x)=d(d y)=d(d z)=0 . \quad\left(d^{2} x=d^{2} y=d^{2} z=0\right)
$$

