(b) (Same C \& same \vec{F}, but new surface)

$$
\begin{aligned}
& S_{2}=x^{2}+y^{2}<9, z=0 \\
& \iint_{S_{2}}(\vec{\nabla} x \vec{F}) \cdot \hat{n} d \sigma=\iint_{\left\{x^{2}+y^{2} \leqslant \rho\right\}}(-2 \hat{k}) \cdot \hat{k} d x d y \\
&=-2 \text { Area }\left(\left\{x^{2}+y^{2} \leqslant 9\right\}\right)=-18 \pi \text { (check!) }
\end{aligned}
$$

(c) Same $\vec{F}=y_{i} \hat{i} \hat{j}$

$$
S_{3}=S_{1} \cup S_{2}
$$

S_{3} has no boundary and

in fact encloses a solid region.
Suppress $\hat{n}=$ outward naval of the solid.

$$
\begin{aligned}
\iint_{S_{3}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma & =\iint_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma+\iint_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma \\
& =\iint_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma+\iint_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot(-\hat{k}) d \sigma \\
& =-18 \pi-\iint_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d \sigma=-18 \pi-(-18 \pi) \\
& =0 \quad\left(S_{3} \text { has no boundary } \Rightarrow \oint_{\partial S_{3}} \vec{F} \cdot d \vec{r}=0\right)
\end{aligned}
$$

egbr Let $\vec{F}=y_{i} \hat{i}-x \hat{j}$ (same \vec{F} as in egb1, newo suface \& nea bocudary cuce)

$$
S_{4}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leqslant 9, x+y+z=0\right\}
$$

boudany cowe of $S_{4}: C_{4}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=9, x+y+z=0\right\}$
Find $\oint_{C_{4}} \vec{F} d \vec{r}$ (with direction of C_{4} given as in the figure.)
Soln: Apply Stokes' Thm

$$
\begin{aligned}
& \oint_{C_{4}} \vec{F} \cdot d \vec{r}=\int_{S_{4}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma \quad \\
&=\iint_{S_{4}}(-2 \hat{k}) \cdot \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} d \sigma \quad \text { is the nomual to } S_{4} \\
& \text { the by egt. of the plane cefficient of }
\end{aligned}
$$

Proof of Stokes' The
Special case: S is a graph given by
$z=f(x, y) \quad$ over a region R with upward normal upward

Assume C is the boundary of S, and C^{\prime} is the bomdary of R (auti-clocksisely oriented wot the normal of S and the plane respectively)

Parametrize the graph as

$$
\vec{r}(x, y)=x \hat{i}+y \hat{j}+f(x, y) \hat{k},(x, y) \in R
$$

$$
\begin{aligned}
& \text { Then as befue } \begin{aligned}
& \begin{array}{l}
\vec{r}_{x}=\hat{i}+\frac{\partial f}{\partial x} \hat{k} \\
\vec{r}_{y}=\hat{j}+\frac{\partial f}{\partial y} \hat{k}
\end{array} \\
& \Rightarrow \vec{r}_{x} \times \vec{r}_{y}=-\frac{\partial f}{\partial x} \hat{i}-\frac{\partial f}{\partial y} \hat{j}+\hat{k} \quad \text { (upward) }
\end{aligned}
\end{aligned}
$$

Hence $\quad \hat{n}=\frac{\vec{r}_{x} \times \vec{r}_{y}}{\left|\vec{r}_{x} \times \vec{r}_{y}\right|}$ is the upward (unit) namal of S, and $d \sigma=\left|\vec{r}_{x} \times \vec{r}_{y}\right| d x d y=\left|\vec{r}_{x} \times \vec{r}_{y}\right| d A$ C area element of R

Let $\vec{F}=M \hat{i}+N \hat{j}+L \hat{k}$ be the C^{\prime} vecta field.
Then

$$
\begin{aligned}
& \iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=\iint_{R}(\vec{\nabla} \times \vec{F})(\vec{r}(x, y)) \cdot \frac{\vec{r}_{x} \times \vec{r}_{y}}{\left|\vec{r}_{x} \times \vec{r}_{y}\right|} \cdot\left|\overrightarrow{r_{x}} x \vec{r}_{y}\right| d A \\
= & \iint_{R}\left[\left(L_{y}-N_{z}\right) \hat{i}+\left(M_{z}-L_{x}\right) \hat{j}+\left(N_{x}-M_{y}\right) \hat{k}\right] \cdot\left[-\frac{\partial f}{\partial x} \hat{i}-\frac{\partial f}{\partial y} \hat{j}+\hat{k}\right] d A \\
= & \int_{R}\left[-f_{x}\left(L_{y}-N_{z}\right)-f_{y}\left(M_{z}-L_{x}\right)+\left(N_{x}-M_{y}\right)\right] d x d y
\end{aligned}
$$

For the lime integral

$$
\left.\begin{array}{rl}
\oint_{C} \vec{F} \cdot d \vec{r} & =\oint_{C} M d x+N d y+L d z \\
& =\oint_{C^{\prime}} M d x+N d y+L d f \quad(z=f(x, y)) \\
& =\oint_{C^{\prime}} \text { parametrized } \\
\text { by }(x, y) t C^{\prime}
\end{array}\right)
$$

Precisely: If C^{\prime} is parametrized by

$$
\vec{\gamma}(t)=(x(t), y(t)) \text { for } a \leqslant t \leqslant b .
$$

Then C is parametrized by

$$
\begin{aligned}
\vec{r}(t) & =(x(t), y(t), f(x(t), y(t))) \\
& =x(t) \vec{i}+y(t) \hat{j}+f(x(t), y(t)) \hat{k}, a \leqslant t \leqslant b \\
\Rightarrow \oint_{c} \vec{F} \cdot d \vec{r} & =\int_{a}^{b}\left[\begin{array}{c}
M(\vec{r}(t)) x^{\prime}(t)+N(\vec{r}(t)) y^{\prime}(t) \\
+L(\vec{r}(t)) \frac{d}{d t} f(x(t), y(t))
\end{array}\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{a}^{b}\left[M x^{\prime}+N y^{\prime}+L\left(f_{x} x^{\prime}+f_{y} y^{\prime}\right)\right] d t \\
& =\int_{a}^{b}\left[\left(M+L f_{x}\right) x^{\prime}+\left(N+L f_{y}\right) y^{\prime}\right] d t \\
& =\oint_{d}\left(M+L f_{x}\right) d x+\left(N+L f_{y}\right) d y
\end{aligned}
$$

Then by Green's Tum

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot d \vec{r}=\oint_{C^{\prime}}(M+L f x) d x+(I V+L f y) d y \\
& =\iint_{R}\left[\frac{\partial}{\partial x}\left(N+L f_{y}\right)-\frac{\partial}{\partial y}\left(M+L f_{x}\right)\right] d A \\
& =\iint_{R}\left\{\begin{array}{c}
\frac{\partial}{\partial x}\left[N(x, y, f(x, y))+L(x, y, f(x, y)) f_{y}(x, y)\right] \\
-\frac{\partial}{\partial y}\left[M(x, y, f(x, y))+L(x, y, f(x, y)) f_{x}(x, y)\right]
\end{array}\right\} d A \\
& =\iint_{R}\left\{\begin{array}{c}
\left(N_{x}+N_{z} f_{x}\right)+\left(L_{x}+\underline{L_{z} f_{x}}\right) f_{y}+L f_{y x} \\
-\left[\left(M_{y}+M_{z} f_{y}\right)+\left(L_{y}+\underline{L_{z} f_{y}}\right) \underline{f_{x}}+L f_{x y}\right]
\end{array}\right\} d A \\
& =\iint_{R}\left[-f_{x}\left(L_{y}-N_{z}\right)-f_{y}\left(M_{z}-L_{x}\right)+\left(N_{x}-M_{y}\right)\right] d A \\
& =\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma \text {. }
\end{aligned}
$$

This proves the case of C^{2} graph.

General case = Divides S into füitely many pieces witch are graphs (in certain projection).
This includes S with many boundary components as in the Green's Thu

(Proof of general case omitted)
Note: Stokes' Thu applies to sonfares like the follownong

eg 63: Let \vec{F} be a vecta field such that $\vec{\nabla} \times \vec{F}=0$ and defined on a region containing the surface, S with unit hamal vecta field \hat{n} as in the figure:
red: scented wot \hat{n} (surface)
black: aieuted wit \hat{k} (banizantal plane)

The boundary C of S has Z components C_{1}, and C_{2} at the level $z=z_{1} \& z=z_{2}$ respectionly.
If both C_{1}, C_{2} aiented anticlockarsely with respect to the "horizontal planes" (ie. \hat{h}).
Then when C oriented with respect to \hat{n} (the surface naval) we have $C=C_{1}-C_{2}$

And Stokes' Thu \Rightarrow

$$
\begin{aligned}
& O=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=\oint_{C_{R}} \vec{F} \cdot d \vec{r} \\
&=\oint_{C_{1}} \vec{F} \cdot d \vec{r}-\oint_{C_{2}} \vec{F} \cdot d \vec{r} \\
& \text { oriented writ } \hat{n} . \\
& \Rightarrow \oint_{C_{1}} \vec{F} \cdot d \vec{r}=\oint_{C} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Compare this with Green's. Thu on plane region with one hole:

$$
\Rightarrow \quad \oint_{C_{1}} \overrightarrow{\vec{F}} \times d \vec{r}=0 \quad \oint_{C_{2}} \vec{F} \cdot d \vec{r} \quad(\text { check! }
$$

centi-clockwisely wot "plane" (not dee region as a surface).

Proof of Thm 10 (3-din'l care)
Only the " \Leftarrow " part remains to be proved:
By consumption $\vec{F}=M \hat{i}+N \hat{j}+L \hat{k}$ satisfies the system of efts in the cor. to the Thu 9, that is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \quad \frac{\partial N}{\partial z}=\frac{\partial L}{\partial y} \text {, and } \frac{\partial L}{\partial x}=\frac{\partial M}{\partial z} .
$$

Hence $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$
Let C be a simple closed cure is a siunply-cumected region D Then C can be defamed to a pours inside D
The process of defamation gives an oriented sinface SCD sack that the boundary of $S=C$.

By Stokes'Thm,

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d \sigma=0 \quad(s \vec{v} \varphi \vec{\nabla} \times \vec{F}=0)
$$

Them $\operatorname{Thm} 9 \Rightarrow \stackrel{\rightharpoonup}{F} \bar{v}$ conservative.

Summary

$$
n=2
$$

$\frac{n=2}{\text { Tangential fum of Green's Thu }}$

$$
n=3
$$

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \tilde{k} d A
$$

Normal farm of Green's Thu

"flux": by definition \hat{n} is the "outward" nomal of care " c " in the "plane".

Stokes' The

$$
\oint_{C} \vec{F} \cdot d \stackrel{\rightharpoonup}{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
$$

Divergence Trim (next topic)
$\iint_{S} \vec{F} \cdot \hat{n} d \sigma=\iiint_{D} \vec{\nabla} \bullet \vec{F} d v$
suffice normal of S, "outward" pouting which can be defined when S encloses a solid region D

Ibm 13 (Diorgence Theorem)
Let \vec{F} be a C^{\prime} vecta field on $\Omega^{\text {gean }} \subseteq \mathbb{R}^{3}$ (no bamudany)
S be a piecewise smooth oriented closed smface endosing a (solid) region $D \subseteq \Omega$.
Let \hat{n} be the outward pointing mit normal vecta field on S,
Then

$$
\iint_{S} \vec{F} \cdot \hat{n} d \sigma=\iiint_{D} d i \vec{F} d v=\iiint_{D} \vec{\nabla} \cdot \vec{F} d v
$$

eg 64 Verify Divergence Th fa_{a}

$$
\begin{aligned}
& \vec{F}=x \widehat{i}+y \hat{j}+z \hat{k} \\
& S=\left\{x^{2}+y^{2}+z^{2}=a^{2}\right\}(a>0)
\end{aligned}
$$

(surface $=S_{a}^{2} 2-$ dine sphere of radius a centered at $(0,0,0)$)

$$
D=\text { solid ball bounded by } S \text {. }
$$

Sole: At $(x, y, z) \in S$

$$
\begin{aligned}
\hat{n} & =\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{a}(x \hat{i}+y \hat{j}+z \hat{k}) \quad \begin{array}{l}
\text { is the outward } \\
\text { poüntug unit naval }
\end{array} \\
\iint_{S} \vec{F} \cdot \hat{n} d \sigma & =\iint_{S}(x \hat{i}+y \hat{j}+\hat{z k}) \cdot \frac{1}{a}(x \hat{i}+y \hat{j}+z \hat{k}) d \sigma
\end{aligned}
$$

$$
=\iint_{S} a d \sigma=a \operatorname{Area}(S)=4 \pi a^{3} \quad \text { (check!) }
$$

On the other hand

$$
\begin{aligned}
d i v \vec{F}=\vec{\nabla} \cdot \vec{F} & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot(x \hat{i}+y \hat{j}+z \hat{k}) \\
& =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3 \\
\Rightarrow \iiint_{D} d i v \vec{F} d V & =\iiint_{D} 3 d v=3 \operatorname{Vol}(D)=3 \cdot \frac{4 \pi a^{3}}{3}=4 \pi a^{3} \\
& =\iint_{S} \vec{F} \cdot \hat{r} d \sigma
\end{aligned}
$$

eg65 $\vec{F}=x_{\operatorname{ain} y} \hat{i}+(\cos y+z) \hat{j}+z^{2} \hat{k}$
Compute outward flux of \vec{F} across the boundary ∂T of

$$
T=\left\{(x, y, z) \in \mathbb{R}^{3}=\begin{array}{r}
x+y+z \leqslant 1 \\
x, y, z \geqslant 0
\end{array}\right\}
$$

(tetrahadron)

Sole:

$$
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial}{\partial x}(x \sin y)+\frac{\partial}{\partial y}(\cos y+z)+\frac{\partial}{\partial z}\left(z^{2}\right)=2 z
$$

(check!)
Divergence The \Rightarrow

$$
\begin{array}{r}
\iint_{\partial T} \vec{F} \cdot \hat{n} d \sigma=\iint_{T} \operatorname{div} \vec{F} d v=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 2 z d z d y d x=\frac{1}{12} \\
\quad \text { (check! })_{\not x x}
\end{array}
$$

egb6: Let S_{1}, S_{2} be 2 surfaces with common boundany came C such that $S_{1} \cup S_{2}$ fams a closed surface euclosung a sobid regim D (without hole)

Suppre \hat{n} is the outward unit noural of the (bowndary of) solid rogion D.

Then the onientation of C with
 respect to $\left(S_{1}, \hat{n}\right)$ and $\left(S_{2}, \hat{n}\right)$ are oppoite (since " \hat{b} " of $S_{1} \& S_{2}$ are opposite) Stokes' Thm \Rightarrow

$$
\begin{aligned}
& \int_{S_{1}}(\vec{\nabla} \times \vec{F}) \times \vec{n} d \sigma=\oint_{C} \vec{H} \cdot d \vec{r} \quad \text { (tve aiented } \operatorname{wit}(S, \hat{n}) \text {) } \\
& =-\oint_{C} \vec{F} \cdot d \vec{r} \quad\left(\text { +ve oreuted } \operatorname{art}\left(\left(S_{2}, \hat{n}\right)\right)\right. \\
& =-\iint_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
\end{aligned}
$$

Dicergence Thm \Rightarrow

$$
\iiint_{D} \operatorname{div}(\vec{\nabla} \times \vec{F}) d V=\iint_{S_{1} \cup_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=0 .
$$

(true for "any" C^{2} vesta field \vec{F} defined on "all" D)
It is consistent wish
(Ex!) $\quad \vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0 \quad \forall c^{2}$ vecta fred
ie. $\quad \operatorname{div}(\operatorname{curl} \vec{F})=0$

Compare: $\quad \operatorname{cuvl}(\operatorname{grad} f)=\overrightarrow{0}$ ie. $\vec{\nabla} \times(\vec{\nabla} f)=\overrightarrow{0}$

Proof of Divergence Thy
Same as Green's Thu, well prove only the case of special domain D which is of type I, II, and III:

$$
\begin{aligned}
D & =\left\{(x, y, z) \in \mathbb{R}^{3}=(x, y) \in R_{1}, f_{1}(x, y) \leqslant z \leqslant f_{2}(x, y)\right\} \text { (type I) } \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}=(y, z) \in R_{2}, g_{1}(y, z) \leqslant x \leqslant g_{2}(y, z)\right\} \text { (type II) } \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}=(x, z) \in R_{3}, h_{1}(x, z) \leqslant y \leqslant h_{2}(x, z)\right\} \text { (type III) }
\end{aligned}
$$

eg: type I domain

eg: Special domains:

And also as in the proof of Green's Thu, for $\vec{F}=M_{i}+N \hat{j}+L \hat{k}$
well prove 3 equalities in the following which combine to give the divergence thin:

$$
\begin{cases}\iint_{S} M \hat{i} \cdot \hat{n} d \sigma=\iiint_{D} \frac{\partial M}{\partial x} d V & (\text { by type II) } \\ \iint_{S} N^{\hat{j}} \cdot \hat{n} d \sigma=\iiint_{D} \frac{\partial N}{\partial y} d V & (\text { by type III) } \\ \iint_{S} L \hat{k} \cdot \hat{n} d \sigma=\iiint_{D} \frac{\partial L}{\partial z} d V & (\text { by type I) }\end{cases}
$$

The proofs are similar, well prove only the last one:

$$
\iint_{S} L \hat{k} \cdot \hat{n} d \sigma=\iiint_{D} \frac{\partial L}{\partial z} d V
$$

By Fubini's Tho

$$
\begin{aligned}
& R_{1} H_{1} S_{.}=\iint_{D} \int_{D} \frac{\partial L}{\partial z} d V=\iint_{R_{1}}\left[\int_{f_{1}(x, y)}^{f_{2}(x, y)} \frac{\partial h}{\partial z} d z\right] d x d y \quad(b y \text { tyke } I) \\
&= \iint_{R_{1}}\left[L\left(x, y, f_{2}(x, y)-L\left(x, y, f_{1}(x, y)\right)\right] d x d y .\right.
\end{aligned}
$$

Fir the LHTS, we note that by definition of type I domain, the boundary surface S of D can be written as

where

$$
\begin{aligned}
& J_{1}=\text { graph of } f_{1}=\left\{\left(x, y, f_{1}(x, y)\right)\right\}=\left\{z=f_{1}(x, y)\right\} \\
& S_{2}=\text { graph of } f_{2}=\left\{\left(x, y, f_{2}(x, y)\right)\right\}=\left\{z=f_{2}(x, y)\right\}
\end{aligned}
$$

$S_{3}=$ a vertical surface (which could be empty) between $S_{1} \& S_{2}$

Hence

$$
\begin{aligned}
L_{S . H . S . ~}=\iint_{S} L \hat{k} \cdot \hat{n} d \sigma= & \iint_{S_{1}} L \hat{k} \cdot \hat{n} d \sigma+\iint_{S_{2}} L \hat{k} \cdot \hat{n} d \sigma \\
& +\iint_{S_{3}} L \hat{k} \cdot \hat{n} d \sigma
\end{aligned}
$$

(since \hat{n} of a vertical surface is horizontal, hence $\hat{k} \cdot \hat{n}=0$) Now on the upper surface $S_{2}=\left\{z=f_{2}(x, y)\right\}$,
the outward normal \hat{n} is upward (in the sense that $\hat{n} \cdot \hat{k}>0$) Note that the parametrization

$$
(x, y) \mapsto \vec{F}(x, y)=x \hat{i}+y_{j} \hat{j} f_{2}(x, y) \hat{k}
$$

has $\left\{\begin{array}{l}\vec{r}_{x}=\hat{i}+\frac{\partial f_{2}}{\partial x} \hat{k} \\ \vec{r}_{y}=\hat{j}+\frac{\partial f_{2}}{\partial y} \hat{k}\end{array}\right.$
and $\vec{r}_{x} \times \vec{r}_{y}=-\frac{\partial f_{z}}{\partial x} \hat{i}-\frac{\partial f_{z}}{\partial y} \hat{j}+\hat{k} \quad+\cdots e \vec{r}_{x} \times \vec{r}_{y}$ is upward.
Hence $\quad \hat{n}=\frac{\vec{r}_{x} \times \vec{r}_{y}}{\left|\vec{r}_{x} \times \vec{r}_{y}\right|}$ is the upward namal
and $\hat{k} \cdot \hat{n}=\frac{1}{\left(\vec{r}_{x} \times \vec{r}_{y}\right)}$.
Therefae $\iint_{S_{2}} L \hat{k} \cdot \hat{n} d \sigma=\iint_{h_{1}} L\left(x, y, f_{2}(x, y)\right) \cdot \overbrace{\frac{1}{\left|\vec{r}_{x} \times \vec{r}_{y}\right|}}^{k} \cdot \overbrace{\overrightarrow{r_{x}} \times \vec{r}_{y} \mid}^{\downarrow} d A$

$$
=\iint_{R_{1}} L\left(x, y, f_{2}(x, y)\right) d x d y
$$

Similarly, note that the outward nomad on S_{1} (lower suface) is downward (is. $\hat{n} \cdot \hat{k}<0$), we hare (by swastiar calculation)

$$
\begin{aligned}
& \left.\hat{n}=-\frac{\vec{r}_{x} \times \vec{r}_{y}}{\left|\vec{r}_{x} \times \vec{r}_{y}\right|}, \text { where } \quad \vec{r}(x, y)=x \hat{i}+y_{j}+f, f, y\right) \vec{k} \\
\Rightarrow & \hat{k} \circ \hat{n}=-\frac{1}{\left|\vec{r}_{x} \times \vec{r}_{y}\right|} \quad \text { (check!) }
\end{aligned}
$$

Hence $\iint_{S_{1}} L \hat{k} \cdot \hat{n} d \sigma=-\iint_{R_{1}} L\left(x, y, f_{1}(x, y)\right) d x d y$

$$
\begin{aligned}
\therefore \iint_{S} L \hat{k} \cdot \hat{b} d \sigma & =\iint_{R_{1}}\left[L\left(x, y, f_{2}(x, y)\right)-L\left(x, y, f_{1}(x, y)\right)\right] d x d y \\
& =\iiint_{D} \frac{\partial L}{\partial z} d v .
\end{aligned}
$$

This caupletes the proof of the divergence tums.

Note: Similar to Green's Thm, the Divergence Thu is also hold fur solid region with finitely many holes insides:

$D=$ sulidregion inside S, but outside of S_{2} and S_{3}

$$
\iiint_{D} \vec{\nabla} \cdot \vec{F} d V=\sum_{i=1}^{n} \iint_{S_{i}} \vec{F} \cdot \hat{n} d \sigma
$$

far $\hat{n}=$ outward normal with respect to D.
eg (ideal of proof of this find of smeface:)

Note: Physical meanùn of $\operatorname{div} F=\vec{\nabla} \cdot \vec{F}$ in \mathbb{R}^{3} $=$ flux density (by the divergence the)

