Ref $19=$ Let S be nieutable with unit nomual \hat{n} (contuncoos).
Let \vec{F} be a vecta field on S.
Then the flux of \vec{F} across S is

$$
F \ln x=\iint_{S} \vec{F} \cdot \hat{n} d \sigma
$$

eg 59: $S=$

$$
y=x^{2}, \quad 0 \leqslant x \leqslant 1, \quad 0 \leqslant z \leqslant 4
$$

with \hat{n} given by the

natural parametrization

$$
\vec{r}(x, z)=x \hat{i}+x^{2} \hat{j}+z \hat{k}
$$

Let $\vec{F}=y z \hat{i}+x \hat{j}-z^{2} \hat{k}$
Find $\iint_{S} \vec{F} \cdot \hat{n} d \sigma$
Sol: To calculate $\hat{n}=\frac{\vec{r}_{x} \times \vec{r}_{z}}{\left|\vec{r}_{x} \times \vec{r}_{z}\right|}$, we han

$$
\left\{\begin{array}{l}
\vec{r}_{x}=\hat{i}+2 x \hat{j} \quad \Rightarrow \quad \vec{r}_{x} \times \vec{r}_{z}=2 x \hat{i}-\hat{j} \\
\vec{r}_{z}=\hat{k} \\
\therefore \hat{n}=\frac{2 x \hat{i}-\hat{j}}{\sqrt{4 x^{2}+1}}
\end{array}\right.
$$

Then

$$
\begin{aligned}
\iint_{S^{\prime}} \vec{F} \cdot \hat{n} d \sigma & =\int_{0}^{4} \int_{0}^{1}(\underbrace{\left(y z \hat{i}+x \hat{j}-z^{2} \hat{k}\right.}_{\vec{F}}) \cdot \underbrace{\frac{2 x \hat{i_{i}}-\hat{j}}{\sqrt{4 x^{2}+1}}}_{\hat{n}} \underbrace{\sqrt{4 x^{2}+1} d x d z}_{d \sigma} \\
& =\int_{0}^{4} \int_{0}^{1}\left(2 x^{3} z-x\right) d x d z \\
& =2 \quad \text { (check! }) \not \begin{array}{|l}
\end{array}
\end{aligned}
$$

Remark:

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \hat{n} d \sigma & =\iint_{(u, v)} \vec{F}(\vec{F}(u, v)) \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v \\
& =\iint_{(u, v)} \vec{F}(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v
\end{aligned}
$$

Thu 12 (Stokes' Theorem)
Let S be a piecewise smooth orisuted smiface with piecewise smooth boundary C (including the case that C is a minion of finely many curves). Let

$$
\vec{F}=M \hat{i}+N \hat{j}+L \hat{k} \text { be a } C^{\prime} \text { vector field. }
$$

Suppress C is nested anti-clock wisely with respect to the wit naval vector field \hat{n} on S. Then

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \text { curl } \vec{F} \cdot \hat{n} d \sigma=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
$$

Here: (i) if $C=C_{1} \cup \cdots \cup C_{k}$, then it moans

$$
\sum_{i=1}^{k} \oint_{C_{i}} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d \sigma
$$

(ii) "C is niented auti-clockvisely with respect to the mit normal vector field $\hat{n}^{\prime \prime}$ means that we choose the direction of d such that its (mist) tangent recta \hat{T} satisfies
$\hat{b}=\hat{n} \times \hat{T}$ painting toward the surface,S

ie. the unit vector \hat{b} tangent to S, naval to d and pointing toward S satisfies

$$
\hat{T}=\hat{b} \times \hat{n}
$$

eg 60
(1)

(2) $S \subset \mathbb{R}^{2}$ with $\hat{n}=\hat{k}$ same as the usual
 auti-clockurise direction of a closed plane curve.
(3)

(4)

Imprtath remark: If S is a region in \mathbb{R}^{2}, then a boundary component of $S\left(C_{1}\right.$ a d_{2} fa instance) has " 2 " concepts of "oriented auti-clockwisely" with respect to $S=$ region and \mathbb{R}^{2}

Even S and \mathbb{R}^{2} have the same orientation, is. $\hat{n}=\hat{k}$, we still have the following situations: $\left(C_{1}, C_{2}\right.$ as in figure)

	$S($ region $)$	\mathbb{R}^{2}
C_{1}^{\prime}	auti-clockwise (t)	cunti-clocknise (t)
C_{2}	auti-clockwise (t)	clockaise $(-)$

(5)

what is the oriented of c_{i} sit. their oriented auti-clockuse with respect to $\hat{n} ?(E x!)$

eg 61 Verifyung Stokes' The
(a) $S_{1}=x^{2}+y^{2}+z^{2}=9, z \geq 0$
with upward normal \hat{n} (ie. \hat{h}-couporeat >0)

boundary $C: x^{2}+y^{2}=9, z=0$
Parametrize C:

$$
\begin{aligned}
\stackrel{\rightharpoonup}{r}(t) & =(3 \cos t, 3 \sin t, 0), 0 \leqslant t \leqslant 2 \pi \\
& =3 \cos t \hat{i}+3 \sin t \hat{j}
\end{aligned}
$$

(has the correct direction, ie. ciented auti-clocknisely wort \hat{n})
Suppose $\vec{F}=y_{i}-x \hat{j}$

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{2 \pi}(3 \sin t \hat{i}-3 \cos t \hat{j}) \cdot(-3 \sin t \hat{i}+3 \cos t \hat{j}) d t \\
& =-18 \pi \quad \quad \text { (check!) }
\end{aligned}
$$

For the sinface integral:

$$
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & -x & 0
\end{array}\right|=-2 \hat{k} \quad \text { (check!) }
$$

Since S, is a hemisphere (upper) centered at origin of radius 3

$$
\hat{n}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{3}(x \hat{i}+y \hat{j}+z \hat{k})
$$

The surface, S, can be regarded as a level smface given by

$$
\begin{aligned}
& g(x, y, z)=x^{2}+y^{2}+z^{2}=9 \\
\Rightarrow & \vec{\nabla} g=(2 x, 2 y, 2 z)
\end{aligned}
$$

Since $z>0$ (except the boundary) on $S_{1}, \quad \frac{\partial g}{\partial z}=2 z \neq 0$

Hence $\quad d \sigma=\frac{|\vec{\nabla} g|}{\left|\frac{\partial g}{\partial z}\right|} d x d y=\frac{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}}{|2 z|} d x d y=\frac{3}{z} d x d y$ $(\operatorname{since} z>0)$
Therefue $\iint_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma$

$$
\begin{aligned}
& =\iint_{\left\{x^{2}+y^{2} \leqslant 9\right\}}(-2 \hat{k}) \cdot \frac{1}{3}(x \hat{i}+y \hat{j}+z \hat{k}) \frac{3}{z} d x d y \\
& =\iint_{\left\{x^{2}+y^{2} \leqslant 9\right\}}(-2) d x d y=-18 \pi \quad \text { (check!) }
\end{aligned}
$$

