Surface area of a graph

$$
z=f(x, y), \quad(x, y) \in \Omega
$$

Choose the following "natural"

parametrization of the graph

$$
\left.\begin{array}{rl}
& \vec{r}(x, y)=x \hat{i}+y \hat{j}+f(x, y) \hat{k} \\
\Rightarrow & \left\{\begin{array}{l}
\vec{r}_{x}=\hat{i}+f_{x} \hat{k} \\
\vec{r}_{y}=\hat{j}+f_{y} \tilde{k}
\end{array}\right. \\
\Rightarrow \quad \vec{r}_{x} \times \vec{r}_{y}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & f_{x} \\
0 & 1 & f_{y}
\end{array}\right|=-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k}
\end{array}\right] \begin{aligned}
& \Rightarrow \vec{r}_{x} \times \vec{r}_{y} \mid=\sqrt{f_{x}^{2}+f_{y}^{2}+1}=\sqrt{\left|+|\vec{\nabla} f|^{2}\right.} \geqslant 1 \\
& \quad\left(\text { non-zero, hence "smooth" if } f \in C^{\prime}\right)
\end{aligned}
$$

Tho II: The simface area of a C^{\prime} graph S given by

$$
z=f(x, y),(x, y) \in \Omega \subset \mathbb{R}^{2}
$$

is $\operatorname{Area}(S)=\iint_{\Omega} \sqrt{1+|\vec{\nabla} f|^{2}} d A=\iint_{\Omega} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A$
(Similarly far $x=f(y, z)$ or $y=f(x, z)$)

Implicit Surface (Level surface)
Suppose S is given by $F(x, y, z)=C$

$$
i_{c} e, \quad S=F^{-1}(c)
$$

(Note: F is a function of 3 -variables, not vecta field)
ef53: $F(x, y, z)=x^{2}+y^{2}+z^{2}$
Is $F^{-1}(0)$ a surface?
No, sūce $F^{-1}(0)=\{(0,0,0)\}$, not a smaface!
Remark: If $\vec{\nabla} F \neq \overrightarrow{0}$ at a point, then IFT implies that $S=F^{-1}(c)$ is a "smface" ($C=$ value of F at that point) near that point (in fact, a graph!)
eg 53 (contd) $\quad \vec{\nabla} F=2 x \hat{i}+2 y \hat{j}+2 z \hat{k}$

$$
\therefore \quad \vec{\nabla} F=\overrightarrow{0} \Leftrightarrow(x, y, z)=(0,0,0)
$$

Hence if $c>0$, then $\forall(x, y, z) \in F^{-1}(c)$, we have

$$
\vec{\nabla} F(x, y, z) \neq \overrightarrow{0}
$$

(since $x^{2}+y^{2}+z^{2}=c>0 \Rightarrow(x, y, z) \neq(0,0,0)$)
$\Rightarrow S=F^{-1}(c)(\forall c>0)$ is a $\operatorname{sinface}$
(What are these surfaces?)

Terminobgy: $S=F^{-1}(c)$ is said to be smooth
if $(1) F$ is C^{\prime} on S, and
(z) $\vec{\nabla} F \neq \overrightarrow{0}$ on S.

How to compute surface area for a smooth level surface

$$
S=F^{-1}(C) ?
$$

By $\vec{\nabla} F \neq \overrightarrow{0}$, at least one of the partial derivatives $F_{x}, F_{y}, \& F_{z}$ is nonzero. Let assume $F_{z}=\frac{\partial F}{\partial z} \neq 0$ (the other cases are similar)

$$
\text { IF } T \Rightarrow \quad S=F^{-1}(c)=\{F(x, y, z)=c\}
$$

can be written (locally) as a graph

$$
z=f(x, y) \quad \text { (near a point) }
$$

ie. $F(x, y, f(x, y))=c \quad$ (near a point)
Then chain rule $\Rightarrow\left\{\begin{array}{l}f_{x}=-\frac{F_{x}}{F_{z}} \\ f_{y}=-\frac{F_{y}}{F_{z}}\end{array} \quad\left(F_{z} \neq 0\right)\right.$
Hence $\operatorname{Area}(S)=\iint_{\Omega} \sqrt{H f_{x}^{2}+f_{y}^{2}} d A \quad$ where $\Omega=$ domain of the

$$
\text { (local) } z=f(x, y) \text {. }
$$

$$
\begin{aligned}
& =\iint_{\Omega} \sqrt{1+\frac{F_{x}^{2}}{F_{z}^{2}}+\frac{F_{y}^{2}}{F_{z}^{2}}} d x d y \\
& =\iint_{\Omega} \frac{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}{\left|F_{z}\right|} d x d y
\end{aligned}
$$

Thu 12 If $S=F^{-1}(c)$ is a smooth level smface such that $F_{z} \neq 0$, and can be represented by an implicit function oo a domain Ω.

Then $\quad \operatorname{Area}(S)=\iint_{\Omega} \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d A=\iint_{\Omega} \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d x d y$
(Similar fa the cases that $F_{x} \neq 0$ or $F_{y} \neq 0$)
eg 54: Find smface area of the paraboloid

$$
x^{2}+y^{2}-z=0 \text { below } z=4
$$

$\binom{$ This is infact a graph, but we }{ do it using method of level smface }

Sold: Let $F(x, y, z)=x^{2}+y^{2}-z$
$\operatorname{Fr} z=4, \quad x^{2}+y^{2}-z=0 \Rightarrow x^{2}+y^{2}=4$
\Rightarrow projected region $\Omega=\left\{(x, y)=x^{2}+y^{2} \leqslant 4\right\}$

$$
\vec{\nabla} F=2 x \hat{i}+2 y \hat{j}-\hat{k}
$$

ie, $\quad F_{z}=-1 \neq 0, \quad \forall(x, y) \in \Omega$.

$$
\begin{aligned}
& \therefore \quad \text { Surface Area }= \iint_{\Omega} \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d A=\iint_{\Omega} \frac{\sqrt{4 x^{2}+4 y^{2}+1}}{|-1|} d x d y \\
& \text { (check!. }= \int_{\left\{x^{2}+y^{2} \leqslant 4\right\}} \sqrt{4 x^{2}+4 y^{2}+1} d x d y=\frac{\pi}{6}\left[(\sqrt{17})^{3}-1\right] \\
& \quad \text { (using polar condiuratos) }
\end{aligned}
$$

Def 16 Surface Integral (of a function)
Supp re $G=S \rightarrow \mathbb{R}$ is a continuous function on a surface S, parametrized by $\vec{P}(u, v),(u, v) \in R \quad($ region $R)$. Then the integral of G on S is

$$
\iint_{S} G d \sigma \frac{d Q f}{=} \iint_{R} G(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$ area element of $\$$

element area of the parameter spate $d A=d u d v$

Note: In the causes of graph or level surface, we have
(i) $\iint_{S} G d \sigma=\iint_{(x, y)} G(x, y, f(x, y)) \sqrt{1+|\vec{\nabla} f|^{2}} d x d y$

$$
(f a z=f(x, y))
$$

(ii) $\iint_{S} G d \sigma=\iint_{(x, y)} G(x, y, z) \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d x d y$

$$
\left(f_{a} F(x, y, z)=c, F_{z} \neq 0\right)
$$

(may be difficult to find there: region a z in tens of (x, y))
eg 56 (a surface of revolution of the convey $y=\cos z$)

$\left(-\frac{\pi}{2} \leqslant z \leqslant \frac{\pi}{2}\right)$
Let $G(x, y, z)=\sqrt{1-x^{2}-y^{2}}$ be a function on , S Find $\iint_{S} G d \sigma$.

Soln: S can be parametrized by

$$
\begin{cases}x=\cos z \cos \theta & \theta \in[-\pi, \pi] \\ y=\cos z \sin \theta & z \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ z=z & \end{cases}
$$

ice. $\quad \vec{r}(\theta, z)=\cos z \cos \theta \hat{i}+\cos z \sin \theta \hat{j}+z \hat{k}$
(Note: there is an exceptional set of "(-dine" so that \vec{r} is not one-to-one or not smooth corresponds to

$$
\begin{array}{ll}
& \left.\theta=\pi a-\pi, z=-\frac{\pi}{2} \text { or } \frac{\pi}{2} .\right) \\
\Rightarrow \quad & \left\{\begin{array}{l}
\vec{r}_{\theta}=-\cos z \sin \theta \hat{i}+\cos z \cos \theta \hat{j} \\
\vec{r}_{z}=-\sin z \cos \theta \hat{i}-\sin z \sin \theta \hat{j}+\hat{k}
\end{array}\right. \\
\Rightarrow \quad \vec{r}_{\theta} \times \vec{r}_{z}=\cos z \cos \theta \hat{i}+\cos z \sin \theta \hat{j}+\sin z \cos z \hat{k} \quad \text { (chock!) } \\
\Rightarrow \quad\left|\vec{r}_{\theta} \times \vec{r}_{z}\right|=\sqrt{\cos ^{2} z\left(1+\sin ^{2} z\right)}=\cos z \sqrt{1+\sin ^{2} z} \quad \quad \quad \text { (Check!) } \\
\quad \quad\left(\cos z \geq 0 \quad \text { fur }-\frac{\pi}{2} \leqslant z \leqslant \frac{\pi}{2}\right)
\end{array}
$$

Then $\iint_{S} G d \sigma=\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} G(\vec{r}(\theta, z))\left|\vec{r}_{\theta} \times \vec{r}_{z}\right| d z d \theta$

$$
\begin{aligned}
& =\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-x^{2}-y^{2}} \cos z \sqrt{1+\sin ^{2} z} d z d \theta \\
& =\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\cos ^{2} z} \cos z \sqrt{1+\sin ^{2} z} d z d \theta \\
(\text { Check! }) & =4 \pi \int_{0}^{\frac{\pi}{2}} \sin z \cos z \sqrt{1+\sin ^{2} z} d z=\cdots=\frac{4 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

Orientation of Suffaces
To ètegrate vecta fields over sufaces, we need
Def 17 (Orientation of a smaface in \mathbb{R}^{3})
A sunface S is orientable if one can defune a unit nomal vecta field contunuously at every ponit of S.
eg57: (i) $S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}$
$\hat{n}=x \hat{i}+y \hat{j}+z \hat{k}$ is cts.

$$
\left(|\hat{n}|=\sqrt{x^{2}+y^{2}+z^{2}}=1\right)
$$

$\therefore S^{2}$ is crieutable
(ii)

(iii) Möbins strup is not nientable (usually refered as a sufface of one side)

Remark: Parametric smface $S=\vec{F}(u, v)$ are alway crientable: the unit nowal vector field $\hat{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}$ given by the parametrization is a contunnos curt nounal vecta field ar S. (\vec{r}_{u}, \vec{r}_{v} "contenums" tangent rectus $\Rightarrow \vec{r}_{u} \times \vec{r}_{v}$ is a "ccutsonoons" nounal recto
$\left|\vec{r}_{u} \times \vec{r}_{v}\right| \neq 0 \Rightarrow \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}$ coutionurs unit nowal vectu field)

Terminology
Given a connected crieutable surface $S \subset \mathbb{R}^{3}$, there are two ways to assign the contüurus unit nounal vecta field

Supp re S is nientable and we have already chosen one continuous wit nounal recta field \hat{n}, before choosing a parametrization.

Ref18: We said that a parametrization $\vec{r}(u, v)$ of S is compatible with the orientation of S given by the unit naval vecta field $\hat{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}$.
$\binom{$ The chosen mit hamal vesta field is also referred as }{ the orientation of $S}$

