(Contd $^{\prime}$)
On the other hand, Fubin's Thu \Rightarrow

$$
\begin{aligned}
\iint_{R}-\frac{\partial M}{\partial y} d A & =\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)}-\frac{\partial M}{\partial y} d y\right) d x \\
& =\int_{a}^{b}-\left[M\left(x, g_{2}(x)\right)-M\left(x, g_{1}(x)\right)\right] d x=\oint_{\partial R} M d x
\end{aligned}
$$

Similar, R is also typo (2), R can be written as

$$
\begin{aligned}
R & =\left\{(x, y)=h_{1}(y) \leqslant x \leqslant h_{2}(y), c \leqslant y \leqslant d\right\} \\
\oint_{\partial R} N d y & =-\int_{C}^{d} N\left(h_{1}(t), t\right) d t+0 \\
& +\int_{C}^{d} N\left(h_{2}(t), t\right) d t+0 \quad y=t C_{c}^{c_{1}} \\
= & \int_{C}^{d}\left[N\left(h_{2}(t), t\right)-N\left(h_{1}(t), t\right)\right] d t \\
& =\int_{C}^{d}\left[N\left(h_{2}(y), y\right)-N\left(h_{1}(y), y\right)\right] d y \\
& =\int_{C}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} \frac{\partial N}{\partial x} d x\right) d y=t
\end{aligned}
$$

All together

$$
\oint_{\partial R}(M d x+N d y)=\iint_{R}-\frac{\partial M}{\partial y} d A+\iint_{R} \frac{\partial N}{\partial x} d A=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

Proof of Green's Thu fa
$R=$ finite union of sample regions with intersection only along some boundary hive segments, and those line segments touch only at the and parits at most.
eq:

$$
\begin{aligned}
& R_{1}, R_{2}=\text { simple } \\
& \text { but } R=R_{1} \cup R_{2} \neq \text { sample } \\
& \partial R_{1}=C_{1}+L \quad \text { I } \\
& \partial R_{2}=C_{2}-L \quad,
\end{aligned}
$$

with anti-clockwise orientation and $\partial R=C_{1}+C_{2}$

By assumption $R=U R_{i}$ finite union sit.

- R_{i} are simple, and
- $R_{i} \cap R_{j}=$ lime segment of a common boundary patton denoted by
$L_{i j}(i \neq j)$
(may be empty)
Then

$$
\begin{aligned}
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A & =\sum_{i} \int_{R_{i}}\left(\frac{\partial N}{\partial X}-\frac{\partial M}{\partial y}\right) d A \\
& =\sum_{i} \oint_{\partial R_{i}} M d x+N d y \quad\binom{\text { by Green's thu }}{\text { fa supple regin }}
\end{aligned}
$$

Denote $C_{i}=$ the pant of ∂R_{i} with no intersection with wavy other R_{j} (except at the end points)
Then $\quad \partial R_{i}=C_{i}+\sum_{\substack{j \\ j \neq i)}} L_{i j}$
where $L_{i j}$ is oriented according to the auti-clocknise orientation of ∂R_{i}
Hence $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\sum_{i} \oint_{\substack{C_{i}+\sum_{j} L_{i j} \\(j+i)}} M d x+N d y$

$$
=\sum_{i} \oint_{C_{i}} M d x+N d y+\sum_{i} \int_{\substack{\sum_{j}^{j} L_{i j} \\(j \neq i)}} M d x+N d y
$$

Note that, as C_{i} io not a cannon boundary of any other B_{j},

$$
\begin{aligned}
\sum_{i} d_{i} & =\partial R \\
\therefore \quad \sum_{i} \oint_{C_{i}} M d x+N d y & =\oint_{\partial R} M d x+N d y
\end{aligned}
$$

Finally, we have $L_{j i}=-L_{i j}$
as $R_{i} \& R_{j}$ are located on the two
 different sides of the common boundary.

$$
\begin{aligned}
\sum_{i} \int_{\sum_{\substack{j}} L_{i j}} M d x+N d y & =\sum_{i} \sum_{j \neq i)} \int_{(j \neq i)} M d x+N d y \\
& =\sum_{\substack{i, j \\
(i \neq j)}} \int_{L_{i j}} M d x+N d y \\
& =\sum_{i<j} \int_{L_{i j}} M d x+N d y+\sum_{\substack{j<i<i \\
i<j}} \int_{L_{i j} j} M d x+N d y \\
& =\sum_{i<j}\left(\int_{L_{i j}} M d x+N d y+\int_{L_{j i}} M d x+N d y\right) \\
& =\sum_{i<j}\left(\int_{L_{i j}} M d x+N d y+\int_{-L_{i j}} M d x+N d y\right) \\
& =0 .
\end{aligned}
$$

This $2^{\text {nd }}$ case basically induce almost all situations in the level of Advanced Calculus.

The proof of general case needs "analysis" and will be omitted here.

Def 12: The divergence of $\vec{F}=M_{i}+N_{j}$ is defined to be

$$
\operatorname{div} \vec{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

Note: $\quad \operatorname{div} \vec{F}=\lim _{\varepsilon \rightarrow 0} \frac{1}{A_{\text {real }}\left(\bar{D}_{\varepsilon}(x, y)\right)} \iint\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A$

$$
=\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Area}\left(\bar{D}_{\varepsilon}(x, y)\right)} \oint_{\partial \bar{D}_{\varepsilon}(x, y)} \vec{F} \cdot \hat{n} d s
$$

called
"flux density".

Notation: $F_{\Omega} f(x, y), \quad \vec{\nabla} f=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j} \quad$ (gradient)

$$
=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right) f
$$

It is convenient to denote

$$
\vec{\nabla}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right)
$$

Then $\quad \vec{\nabla} \cdot \vec{F}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right) \cdot(M \hat{i}+N \hat{j})$

$$
=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}=\operatorname{div} \vec{F}
$$

Hence we also write

$$
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}
$$

Def 13 : Define rot \vec{F} to be

$$
\operatorname{rot} \vec{F}=\frac{\partial N}{\partial X}-\frac{\partial M}{\partial y} \quad(f a \vec{F}=M \hat{i}+N \hat{j})
$$

Note:

$$
\begin{aligned}
& \operatorname{rot} \vec{F}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Area}\left(\bar{D}_{\varepsilon}(x, y)\right)} \iint_{\bar{D}_{\varepsilon}(x, y)}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
&=\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Area}\left(\bar{D}_{\varepsilon}(x, y)\right)} \oint_{\partial \bar{D}_{\varepsilon}(x, y)} \vec{F} \cdot \hat{T} d s \\
& \text { called }
\end{aligned}
$$

$=$ circulation density
Using $\vec{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}$, we can write

$$
\operatorname{rot} \stackrel{\rightharpoonup}{F}=(\vec{\nabla} \times \vec{F}) \cdot \hat{k}
$$

Since $\vec{F}=M \hat{i}+N_{j}+0 \cdot \hat{k} \quad\left(\right.$ in $\left.\mathbb{R}^{3}\right) \quad(M=M(x, y) \& N=N(x, y))$

$$
\begin{aligned}
& \vec{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z} \quad\left(i n \mathbb{R}^{3}\right) \quad\left(\frac{\partial M}{\partial z}=\frac{\partial N}{\partial z}=0\right) \\
& \Rightarrow \vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & 0
\end{array}\right|=\left\{\left.\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
M & N
\end{array} \right\rvert\, \hat{k}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \hat{k}\right. \\
& \text { (check!) }
\end{aligned}
$$

$\Rightarrow \quad \operatorname{rot} \vec{F}=(\vec{\nabla} \times \vec{F}) \cdot \hat{k}$ ie. \hat{k}-component of $\vec{\nabla} \times \vec{F}$.
A name far $\vec{\nabla} \times \vec{F}$ is curl \vec{F} : \quad curl $\vec{F} \stackrel{\text { def }}{=} \vec{\nabla} \times \vec{F}$

In these notation, the Green's tum can be written as

Vector form of Green's Thu
normal fam

$$
\phi \oint_{C} \vec{F} \circ \hat{n} d s=\iint_{R} \operatorname{div} \vec{F} d A
$$

$a \quad \oint_{C} \vec{F} \cdot \hat{n} d s=\iint_{R} \vec{\nabla} \cdot \vec{F} d A$
tangential fam

$$
\begin{aligned}
& \qquad \oint_{C} \vec{F} \cdot \hat{T} d s=\iint_{R} c m l \vec{F} \cdot \hat{k} d A \\
& \oint_{C} \vec{F} \cdot \hat{T} d s=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d A
\end{aligned}
$$

And $\operatorname{Thm} 10$ can be written as
The 10': Ω simply-connected \& connected, $\vec{F} \in C^{\prime}$.
Then $\vec{F}=$ conservative \Leftrightarrow curl $\vec{F}=\vec{\nabla} \times \vec{F}=0$
Note: (i) curl $\vec{F}=\vec{\nabla} \times \vec{F}$ defined only in $\mathbb{R}^{3}\left(\supset \mathbb{R}^{2}\right)$
(ii) but $\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}$ can be defined on \mathbb{R}^{n} for any n

In particular, in \mathbb{R}^{3}

Def 12^{\prime} The divergence of $\vec{F}=M \hat{i}+N \hat{j}+L \hat{k}$ is defined to be

$$
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot(M \hat{i}+N \hat{j}+L \hat{k})=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial L}{\partial z}
$$

Then one can easily check the following facts: (Ex!)
(i) $\vec{\nabla} \times(\vec{\nabla} f)=0$ (ie. cull $\vec{\nabla} f=0)$
(ii) \vec{F} conservative \Rightarrow and $\vec{F}=\vec{\nabla} \times \vec{F}=0$
(iii) $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0 \quad$ (ie. $\operatorname{div}(c m l \vec{F})=0)$

Remark: $\vec{\nabla} \cdot(\vec{\nabla} f) \neq 0$ in general, and it is called the

Laplacian of f and is denoted by

$$
\begin{aligned}
\vec{\nabla}^{2} f & =\vec{\nabla} \cdot(\vec{\nabla} f)=\operatorname{div}(\vec{\nabla} f) \\
& =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

[In graduate level, -t will be denoted by $\Delta=\vec{\nabla}^{2}$ a $\left.\Delta=-\vec{\nabla}^{2}\right]$
The "operator" $\vec{\nabla}^{2}$ is called the Laplace operate and the equation $\vec{\nabla}^{2} f=0$ is called the Laplace equation. Solutions to the Laplace equation are called harmaic functions.

Pf of Th $10 \quad(n=2)$
We only need to show that if Ω amply-connected (\& connected) and

$$
\left.\vec{\nabla} \times \vec{F}=\overrightarrow{0} \quad \text { (ie. } \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\right)
$$

then \vec{F} is conservative.
Case 1 $=C_{1}, C_{2}$ have no intersection. (except the same end pats)
Then " Ω is simply-courected"
\Rightarrow the region R enclosed
by C_{1} and C_{2} lies
 completely inside Ω.
Then by Green's Thu

$$
\begin{aligned}
& 0=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A= \pm\left(\int_{C_{1}}-\int_{C_{2}}\right)(M d x+1 N d y) \\
& \Rightarrow \quad \int_{C_{1}} M d x+N d y=\int_{C_{2}} M d x+N d y
\end{aligned}
$$

Cave $2 C_{1}, C_{2}$ intersect
Pick another cave C_{3} with the same starting point
 and end paint, and does not intersect C_{1} or C_{2}.

Then by care 1, $\int_{C_{1}} M d x+N d y=\int_{C_{3}} M d x+N d y=\int_{C_{2}} M d x+N d y$
$\therefore \int_{C} \vec{F} \cdot d \vec{r}$ is independent of the path and Hence
\vec{F} is conservative.

In order to apply Green's Thy to more general situations, we need a general form of Green's Thu:

Suppress that we have a simple closed cove C is \mathbb{R}^{2}

Sapporo that $C_{1}, C_{2}, \ldots, C_{n}$ be pairwise disjoint, piecewise smooth, supple closed caves, such that $d_{1}, \cdots ; C_{n}$ are enclosed by C.
(All C, d_{1}, \cdots, C_{n} are anti-clockwise oriented.)
Let R be the region between C and C_{1}, \cdots, C_{n}.
Suppose that $\vec{F}=M \hat{i}+N \hat{j}$ is defined on sone open set containsug
R, and is C^{\prime}. Then

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\oint_{d} M d x+N d y-\sum_{i=1}^{n} \oint_{C_{i}} M d x+N d y
$$

(This is the tangential fam. The namal fam is suisilar)

Sketch of Proof
For simplicity, ally one C_{1} inside C
We connect C \& C, by an " $\operatorname{arc}^{\prime} L$
 and consider the "single" closed cure
(startary from P): $C^{*}=C+L-C, L$
Then the region R enclosed between $C \& C_{1}$ is the region enclosed by ${C^{*}}^{*}$ except the arc L.
Hence $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\iint_{R \backslash L}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$

$$
\begin{aligned}
\text { Green's } & =\oint_{C} M d x+N d y \\
& =\left(\oint_{C}+\int_{L}+\oint_{-C_{1}}+\int_{-L}\right)(M d x+N d y) \\
& =\left(\oint_{C}+\int_{L}-\oint_{C_{1}}-\int_{L}\right)(M d x+N d y) \\
& \left.=\oint_{C} M d x+N d y-\oint_{C_{1}} M d x+N d y \not \not X\right)
\end{aligned}
$$

eg 49 $=\vec{F}=\frac{-y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}$ on $\mathbb{R}^{2} \backslash\{(0,0)\}=\Omega$
we/he calculated $\oint_{C_{1}} \vec{F} \cdot d \vec{r}=2 \pi \quad$ for $C_{1}=x^{2}+y^{2}=1$
(anti-clockwise)
How about
(a)

$$
\oint_{C} \vec{F} \cdot d \vec{r}=?
$$

Sols
(a) Recall that $\vec{\nabla} \times \vec{F}=0$
$\left(\begin{array}{c}G r e e n ' s ~ t h m ~ d o e a n ' t ~ a p p l y ~ t o ~ g e t ~ \\ \oint_{C} \vec{F} \cdot d \vec{r}=0 \text {, since } \\ C \text { encloses the engin }(0,0) \text { where } \vec{F} \text { is not defined }\end{array}\right)$
Choose $\varepsilon>0$ small enough
such that the circle
d_{ε} of radius ε centered
at $(0,0)$ is completely

$\varepsilon_{\varepsilon}=$ circle of radius $\varepsilon>0$ centered at $(0,0)$ enclosed by C.
\vec{F} is smooth in the region R between C and C_{ε}.
Hence the general fam of Green's Thu applied.

$$
\begin{aligned}
& 0=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \hat{k}^{\prime} d A=\oint_{C} \vec{F} \cdot d \vec{r}-\oint_{C_{\varepsilon}} \vec{F} \cdot d r \\
& \Rightarrow \oint_{C} \vec{F} \cdot d \vec{r}=\oint_{C_{\varepsilon}} \vec{F} \cdot d r \\
&=\oint_{C_{\varepsilon}} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
\end{aligned}
$$

Parametrize C_{ε} by $\left\{\begin{array}{l}x=\varepsilon \cos \theta \\ y=\varepsilon \sin \theta\end{array}, 0 \leqslant \theta \leqslant 2 \pi\right.$

$$
\begin{aligned}
\Rightarrow \oint_{C \varepsilon} \vec{F} \cdot d \vec{r} & =\int_{0}^{2 \pi}\left[\frac{-\varepsilon \operatorname{sen} \theta}{\varepsilon^{2}}(-\varepsilon \sin \theta)+\frac{\varepsilon \cos \theta}{\varepsilon^{2}}(\varepsilon \cos \theta)\right] d \theta \\
& =2 \pi \\
\Rightarrow \oint_{C} \vec{F} \cdot d \vec{r} & =2 \pi \not x
\end{aligned}
$$

[Infact, we've proved that $\oint_{C_{R}} \vec{F} \cdot d \vec{r}=2 \pi, \forall$ radius s $R>0$, which can be seen by consider the domain between $C_{1} \& C_{R}$

Green's Thun

$$
\Rightarrow \oint_{C_{1}} \vec{F} \cdot d \vec{r}=\oint_{C_{R}} \vec{F} \cdot d \vec{r}
$$

Decoupres the cave uto

$$
\begin{aligned}
& \Rightarrow \quad \oint_{C_{1}} \vec{F} \cdot d r=0 \quad \text { by part }(a) \oint_{C_{2}} \vec{F} \cdot d r=2 \pi \\
& \therefore \oint_{d} \vec{F} \cdot d \vec{r}=0+2 \pi=2 \pi .
\end{aligned}
$$

Addiftion exauple (C)

Hence $\oint_{C} \vec{F} \cdot d \vec{r}=2 \pi+0+2 \pi=4 \pi$
(optional ex! : thicin of some examples with -2π)

