Remark: To prove Thin 10 in
$$\mathbb{R}^{2}$$
, we need the Green's Thin
(in \mathbb{R}^{3} , we used the Stokes' Thin)
Thull (Green's Theorem)
let $SZ \subseteq \mathbb{R}^{2}$ be open, $\vec{F} = M\hat{x} + N\hat{y}$ be C¹ vecta field on SZ ;
C be a preceivise Smooth since closed auti-clockwise miented
curve enclosing a region R which lies entirely in SZ.
Then Namel Fran
 $\oint_{C} \vec{F} \cdot \hat{n} ds = \oint_{C} Mdy - Ndx = \iint_{R} (\frac{2M}{2x} + \frac{2N}{2y}) dxdy$
 $\cdot Taugential Fran$
 $\oint_{C} \vec{F} \cdot \hat{n} ds = \oint_{C} Mdx + Ndy = \iint_{R} (\frac{2M}{2x} + \frac{2N}{2y}) dxdy$
 $(Remark : The two frams are equivalent)$
Note: $Q_{1} = \mathbb{R}^{2} \cdot \frac{1}{1} \times \frac{5}{5}$
 $\int_{C} Z_{2} = \mathbb{R}^{2} \cdot \frac{1}{2} \times \frac{5}{5}$
 $\int_{RZ} Z_{2} = \mathbb{R}^{2} \cdot \frac{1}{2} \times \frac{5}{5}$
 $Green's than applies,
 $\sin e \mathbb{R} \subseteq S_{1}$$

eg48 Verify both forms of Green's Thm fa $\vec{F}(X,Y) = (X-Y)\hat{i} + X\hat{j}$ on $\mathcal{N} = [R^2, \hat{u}] C^{(\omega)}$. C = unit circle = F(t) = (st i + sint j, te [0, 21])Then R = region enclosed by $C = \{x^2 + y^2 < 1\}$ the unit disc. (We also write C = 2R boundary of R) M = X - Y, N = XSom $\frac{\partial M}{\partial x} = 1$, $\frac{\partial M}{\partial y} = -1$; $\frac{\partial N}{\partial x} = 1$, $\frac{\partial N}{\partial y} = 0$ On C, X=cont, Y=sunt, $t\in [0,2\pi]$ Normal form L.H.S. = \$ Mdy-Ndx = S^2TT (cost-sint) doint - cost dort $= \left(\begin{array}{c} 2\pi & \cos^2 t \, dt = \pi & (\operatorname{check}!) \end{array} \right)$ $RHS = \iint \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) dxdy = \iint (1+0) dxdy = \pi$ Taugential form L.H.S. = \$ Mdx+Ndy = 2 TT (check!) $R, H.S. = \iint_{\partial X} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \iint_{\partial Y} \left(1 - (-1) \right) dx dy = 2 \text{TT}$ (<u>Note</u>: This example shows that even the z forms are equivalent,) the values involved may differ.

Pf of Green's Thun (taugential form) Recall: A region R is of special type: type (1) = If R = {(x,y) = a≤x≤b, g₁(x) ≤ y ≤ g₂(x)} for some continuous functions g₁(x) ≤ g₂(x), type (z): If R = {(x,y) = h₁(y) ≤ x ≤ h₂(y), c≤y≤d} for some continuous functions h₁(x) ≈ h₂(x), <u>Novo</u> : If R is both type (1) and type (2), it said to be <u>simple</u>.

Pf of Green's Thun for Suiple Region
By definition, R is of type (1) and
can be written as

$$R = \{(x,y): a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

Let denote the components of the boundary
of R by C₁, C₂, C₃, and C₄ as in the figure
(Note: C₂ and/or C₄ could just be a point)
Then $\Im R = C_1 + C_2 + C_3 + C_4$ as oriented curve
(using "+" instead of "U" to denote the orientation)

 $C_1 = \{y = g_1(x)\}$ can be parametrized by Now $(x,y): \vec{r}(t) = (t, g_1(t)), a \leq t \leq b$ (with correct ineutation) $\therefore \int_{\Omega} M dx = \int_{\Omega}^{b} M(t, g(t)) dt$ Suislarly "- Cz" can be parametrized by $F(t) = (t, g_2(t))$, as to (with correct orientation) $\therefore \int_{-C_{a}} M dx = \int_{a}^{b} M(t, g_{2}(t)) dt$ $\Rightarrow S_{d_s} M dx = - \sum_{d_s} M dx = - \int_a^b M(t, g_s(t)) dt$ For Cz= 1x=b5, it can be parametrized by $F(t) = (b, t), g(b) \leq t \leq g_2(b)$ (with correct ineutation) $\Rightarrow \int_{C} M dx = 0 \quad (Since \frac{dx}{dt} = 0)$ Similarly $\int_{C_a} M dx = - \int_{C_a} M dx = 0$ Hence $\oint M dx = \sum_{i=1}^{4} \int_{C_i} M dx$ $= \int^{b} \left[M(t,g_{1}(t)) - M(t,g_{2}(t)) \right] dt$ $\left(=\int_{a}^{b}\left[M(x,g_{1}(x))-M(x,g_{2}(x))\right]dx\right)$ (To be cart'd)