Def 11 A vector field is defined to be
continuous/differintiable / C^{k} if the component functias are.
eg 38:

$$
\begin{aligned}
& \vec{F}(x, y)=\vec{r}(x, y)=x \hat{i}+y \hat{j} \text { is } C^{\infty} \quad \text { (position vector) } \\
& \vec{F}(x, y)=\frac{-y \hat{i}+x \hat{j}}{\sqrt{x^{2}+y^{2}}} \quad \text { is not certitunces is } \mathbb{R}^{2} \\
& \quad\left(\text { but cuntinucas in } \mathbb{R}^{2}(\{10,0)\}\right)
\end{aligned}
$$

Line integral of vector field
Ref 12: Let C be a conure with "orientation" given by a parametrization $\vec{r}(t)$ with $\vec{r}^{\prime}(t) \neq 0, \forall t$. Define the lime integral of a vecta field \vec{F} along C to be

$$
\int_{C} \vec{F} \cdot \hat{T} d s
$$

where $\hat{T}=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$ is the mit tangent nectar field along C.

$$
\left(\begin{array}{cc}
\text { ie. C is ciented is the direction } \\
\text { every point } & \vec{r}^{\prime}(t) \text { or } \hat{T} \text { at }
\end{array}\right)
$$

Note: If $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}(n=2$ or 3$)$ then

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \underbrace{\hat{J} d s} & =\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{\vec{r}^{\prime}(t)}{\| \vec{r}^{\prime}(t)}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \underbrace{\vec{r}^{\prime}(t) d t}
\end{aligned}
$$

\therefore naturally, we denote $d \vec{r}=\hat{T} d s$
and $\quad \int_{C} \stackrel{\rightharpoonup}{F} \cdot \hat{T} d s=\int_{C} \stackrel{\rightharpoonup}{F} \cdot d \vec{F}$
$\operatorname{eg} 38: \vec{F}(x, y, z)=z \hat{\imath}+x y \hat{j}-y^{2} \hat{k}$

$$
C=\vec{r}(t)=t^{2} \hat{i}+t \hat{j}+\sqrt{t} \hat{k}, \quad 0 \leqslant t \leq 1
$$

Sol $\quad d \vec{r}=\left(2 t \hat{i}+\hat{\jmath}+\frac{1}{2 \sqrt{t}} \hat{h}\right) d t \quad\left(\vec{r}^{\prime}(t) d t\right)$
and $\int_{C} \vec{F} \cdot \hat{T} d S=\int_{C} \vec{F} \cdot d \vec{r}$

$$
\begin{aligned}
& =\int_{C}\left(\sqrt{t} \hat{i}+\left(t^{2} \cdot t\right) \hat{j}-t^{2} \hat{k}\right) \cdot\left(2 t \hat{i}+\hat{j}+\frac{1}{2 \sqrt{t}} \hat{k}\right) d t \\
& =\int_{0}^{1}\left(2 t \sqrt{t}+t^{3}-\frac{1}{2} t^{3 / 2}\right) d t \quad(\text { Check!) } \\
& =\frac{17}{20} \quad \text { (check!) }
\end{aligned}
$$

In components form:
Line integral of $\vec{F}=M \hat{i}+N \hat{j}$ along

$$
C=\vec{r}(t)=g(t) \hat{i}+h(t) \hat{j}
$$

can be expressed as

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \vec{T} d s & =\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b}\left(\vec{F} \cdot \frac{d \vec{r}}{d t}\right) d t \\
& =\int_{a}^{b}\left(M g^{\prime}+N h^{\prime}\right) d t
\end{aligned}
$$

(mae explicitly: $\quad \int_{a}^{b}\left[M(g(t), h(t)) g^{\prime}(t)+N(g(t), h(t)) h^{\prime}(t)\right] d t$)
Note that, $\left\{\begin{array}{l}x=g(t) \\ y=h(t)\end{array}\right.$

$$
\left.\begin{array}{rl}
& \Rightarrow\left\{\begin{array}{l}
d x \\
d \\
d y
\end{array}=g^{\prime}(t) d t\right. \\
h^{\prime}(t) d t
\end{array}\right\}
$$

Suisilarly, fa 3-duin.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \hat{T} d s= & \int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} M d x+N d y+L d z \\
& \left(\text { for } \vec{F}=M \vec{i}+N_{j}+L \hat{k}\right)
\end{aligned}
$$

Another way to justify the notation:
$\vec{r}=(x, y, z)$ the position rectu

$$
\Rightarrow \quad d \vec{r}=(d x, d y, d z) \quad \text { (natural notation) }
$$

The er

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \hat{T} d S & =\int_{C} \vec{F} \cdot d \vec{r}=\int_{C}(M, N, L) \cdot(d x, d y, d z) \\
& =\int_{C} M d x+N d y+L d z
\end{aligned}
$$

eg 39: Evaluate $I=\int_{C}-y d x+z d y+2 x d z$
where $C=\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}+t \hat{k} \quad(0 \leqslant t \leqslant 2 \pi)$

$$
=(\cos t, \sin t, t)
$$

Son

$$
\begin{aligned}
I & =\int_{0}^{2 \pi}(-\sin t) d(\cos t)+t d(\sin t)+2 \cos t d t \\
& =\int_{0}^{2 \pi}\left(\sin ^{2} t+t \cos t+2 \cos t\right) d t \\
& =\cdots=\pi \quad(\operatorname{check}!) \\
(d \vec{r} & \left.=(-\sin t, \cos t, 1) d t, \text { iss. } \vec{F}^{\prime}(t)=(-\sin t, \cos t, 1)\right)
\end{aligned}
$$

Physics
(1) $\vec{F}=$ Force field
C = oriented cure
then $W=\int_{C} \vec{F} \cdot \hat{T} d s$
is the wakdone in moving an object alloy d,
(2) $\vec{F}=$ velocity vecta field of fluid
C = oriented combe
Then $\quad F$ low $=\int_{d} \vec{F} \cdot \hat{T} d S$

Flow along the cone d.
If c is "closed", the flow is also called a circulation.
Def 13 : A curve is said to be
(i) simple if it does not intersect with itself except possibly at and points.
(ii) closed if starting point = end point.
(iii) simple closed cane if it is both single and closed.

Note:

Note:	Yo	Yes	NO
sumple	Nes		
closed	Yes	NO	NO

(3) $\vec{F}=$ velocity of fluid
$C=$ oriented plane conve $\left(C \subset \mathbb{R}^{2}\right)$ (Simiple, llosed) with parametrization $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$
$\hat{n}=$ outurard-pountong wint nommal (vecta) to the curne d

$$
\hat{n}=\hat{T} \times \hat{k}
$$

if C is of auti-clockuise aieutation

$$
\hat{n}=-\hat{T} \times \hat{k}
$$

if C is of clockwise orientation.

Formula for \hat{n} (wry the parametrization $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j})$
Recall $\hat{T}=\frac{\vec{F}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}}{\left\|\vec{r}^{\prime}(t)\right\|}$

$$
\left(\text { in arc-length parametrization }=\hat{T}=\frac{d \vec{T}}{d s}=\frac{d x}{d s} \hat{i}+\frac{d y}{d s} \hat{j}\right)
$$

Anti-clocknise:

$$
\begin{aligned}
& \hat{n}=\hat{T} x \hat{k}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{x^{\prime}}{\left\|\vec{r}^{\prime}\right\|} & \frac{y^{\prime}}{\left\|\vec{r}^{\prime}\right\|} & 0 \\
0 & 0 & 1
\end{array}\right| \\
& \Rightarrow \quad \hat{n}=\frac{y^{\prime}(t) \hat{i}-x^{\prime}(t) \hat{j}}{\left\|\vec{r}^{\prime}(t)\right\|} \quad\left(02 \quad \hat{n}=\frac{d y}{d s} \hat{i}-\frac{d x}{d s} \hat{j}\right)
\end{aligned}
$$

Clockwise: $\quad \hat{n}=\frac{-y^{\prime}(t) \hat{i}+x^{\prime}(t) \hat{j}}{\left\|\vec{r}^{\prime}(t)\right\|}\left(v \hat{n}=-\frac{d y}{d s} \hat{i}+\frac{d x}{d s} \hat{j}\right)$
Flux of \vec{F} across C def $\int_{C} \vec{F} \cdot \hat{n} d s \quad\left(\begin{array}{c}\text { amount of flied } \\ \text { getting out of the } \\ \text { closed cove } C\end{array}\right)$
If $\vec{F}=M(x, y) \hat{i}+N(x, y) \hat{j}$
and $\vec{F}(t)=x(t) \hat{i}+y(t) \hat{j}$ is auti-clockwise parametrization of C (closed carve)
Then

Flux of \vec{F} across d

$$
\begin{aligned}
& =\oint_{C}(M \hat{i}+N \hat{j}) \cdot\left(\frac{d y}{d s} \hat{i}-\frac{d x}{d s} \hat{j}\right) d S \\
& =\oint_{C} M d y-N d x
\end{aligned}
$$

Remark: - \oint : conve is closed $\&$ in anti-clockevise direction

- $\mathcal{G}=$ curve is closed $\&$ in clockurise direction
(not a common notation)
- But in some books, only " " $^{\prime}$ is used, NO arrow, Then one needs to determine the nientation from the context.
- Convention: If no orientation is mentioned, " Φ " without arrow means anti-clockurise nieutation (positive orientation)
eg 40 : Let $\vec{F}=(x-y) \hat{i}+x \hat{j}$

$$
C=x^{2}+y^{2}=1
$$

Find the flow (anti-clocknisely) along C and flux across C.

Sols: Let $\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}, \quad 0 \leqslant t \leqslant 2 \pi$
(Note: correct aientation) (Check!)

$$
\text { Then } \begin{aligned}
f l o w & =\oint_{C} \vec{F} \cdot \hat{T} d s=\oint_{C} \vec{F} \cdot d \vec{r} \\
& =\oint_{C}[(\cos t-\sin t) \hat{i}+\cos t \hat{j}] \cdot[-\sin t \hat{i}+\cos t \hat{j}] d t \\
& =\int_{0}^{2 \pi}\left[-\sin t(\cos t-\sin t)+\cos ^{2} t\right] d t \\
& =\cdots=2 \pi \quad(\operatorname{check}!)
\end{aligned}
$$

$$
\begin{aligned}
f l u x & =\oint_{C} \vec{F} \cdot \hat{n} d s=\oint_{C} M d y-N d x \quad \begin{array}{c}
\text { (with anti-cloclewise } \\
\text { orientation }
\end{array} \\
& =\int_{0}^{2 \pi}(\cos t-\sin t) d \sin t-\cos t d(\cos t) \\
& \left.=\int_{0}^{2 \pi}[\cos t-\sin t) \cos t+\cos t \sin t\right] d t \\
& =\cdots=\pi \quad(\text { check!) }
\end{aligned}
$$

Remark: If C is an oriented curve, then denote by "-C" the oriented curve with opposite orientation

- If f is a scalar function

$$
\int_{C} f d s=\int_{-C} f d s
$$

as "ds" is not oriented, just "length"

- If \vec{F} is a vecta field
flow

$$
\int_{C} \vec{F} \cdot \hat{T} d s=-\int_{-C} \vec{F} \cdot \hat{T} d s
$$

More precise facula:

$$
\int_{C} \vec{F}^{2} \hat{T}_{C} d s=-\int_{-C} \vec{F} \cdot \hat{T}_{-C} d s
$$

- But fa flux $\oint_{C} \vec{F} \cdot \hat{n} d s=\oint_{-C} \vec{F} \cdot \hat{n} d s \quad \hat{n}$ always outward

Summary:

$\underline{\text { scalar } f}$	$\int_{C} f d s$ indep. of cientation	$d s$ have no direction
$\frac{\text { vector } \vec{E}}{f l o w}$	$\int_{C} \vec{F} \cdot \hat{T} d s$ depends on mentation	\hat{T} depends on direction
flux	$\int_{C} \vec{F} \cdot \hat{n} d s$ indef. of aneitation	\hat{n} always outward

