eg33: Let C be a curve in \mathbb{R}^{2} (plane curve) (ie. $z(t) \equiv 0$) and it has 2 parametrizations

$$
\begin{array}{ll}
\vec{r}_{1}(t)=(\cos t, \sin t), & t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\vec{r}_{2}(t)=\left(\sqrt{1-t^{2}},-t\right), & t \in[-1,1]
\end{array}
$$

Suppose $f(x, y)=x$. Find $\int_{c} f(x, y) d s$.
(We singly omit the z-variable, as C is a plane curve and f is indep. of z)

Sols:

$$
\begin{aligned}
& \vec{r}_{1}(t)=(\cos t, \sin t),-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2} \\
& \int_{C} f(x, y) d s=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\cos t, \sin t)\left\|(\cos t, \sin t)^{\prime}\right\| d t \\
&=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \cdot 1 d t=2 \text { (Check!) }
\end{aligned}
$$

(2)

$$
\begin{align*}
& \vec{r}_{2}(t)=\left(\sqrt{1-t^{2}},-t\right),-1 \leqslant t \leqslant 1 \\
& \int_{C} f(x, y) d s=\int_{-1}^{1} f\left(\sqrt{1-t^{2}},-t\right)\left\|\frac{d}{d t}\left(\sqrt{1-t^{2}},-t\right)\right\| d t \\
&=\int_{-1}^{1} \sqrt{1-t^{2}} \cdot \sqrt{\left(\frac{d}{d t} \sqrt{1-t^{2}}\right)^{2}+\left(\frac{d}{d t}(-t)\right)^{2}} d t \\
&=\cdots=\int_{-1}^{1} d t=2 \quad \text { (check!) } \tag{check!}
\end{align*}
$$

This verifies the fact that the line integral is indef. of the ponamet rization

Prop 7 : if C is a preconise smooth curve made by jouncing $C_{1}, C_{2}, \ldots C_{n}$ end-to-end, then

$$
\int_{C} f d s=\sum_{i=1}^{n} \int_{C_{i}} f d s
$$

(Pf: Clear from the remark (3) of Def C^{\prime}, but C_{i} can be $)$ piecense in this Prop.

Remark: "end-to-end" means "end point of $C_{k-1}=$ initial paint of C_{k} ".
eg 34: Let $f(x, y, z)=x-3 y^{2}+z$ (again)
C_{1}, C_{2}, C_{3} are line segments as in the figure

We already did $\int_{C_{1}} f d s=0 \quad(\operatorname{eg} 32)$
One can similarly calculate

$$
\begin{aligned}
\int_{C_{2} \cup C_{3}} f d s & =\int_{C_{2}} f d s+\int_{C_{3}} f d s \\
& =-\frac{\sqrt{2}}{2}-\frac{3}{2} \quad\left(E_{x}!\right)
\end{aligned}
$$

(Fa instance, $\int_{d_{3}} f d s=\int_{0}^{1}\left(1-3(1)^{2}+t\right) d t$ (walt parametrization?))
The observation is $\int_{C_{1}} f d s=0 \neq \int_{C_{2} \cup C_{3}} f d s$
even $C_{1} \& C_{2} \cup C_{3}$ have the same beginning and end points!
(Remark: different from 1-variable calculus)

Conclusion: Line integral of a function depends, not only on the end points, but also the path.

Nectar Fields
Ref $10=$ Let $D \subset \mathbb{R}^{2}$ a \mathbb{R}^{3} be a region, then a vecta field on D is a mapping $\vec{F}: D \rightarrow \mathbb{R}^{2}$ a \mathbb{R}^{3} respectively

In component form:

$$
\begin{aligned}
& \mathbb{R}^{2}=\vec{F}(x, y)=M(x, y) \hat{i}+N(x, y) \hat{j} \\
& \mathbb{R}^{3}=\vec{F}(x, y, z)=M(x, y, z) \hat{i}+N(x, y, z)^{\hat{j}}+L(x, y, z) \hat{k}
\end{aligned}
$$

where M,N,L are functions on D called the components of \vec{F}.
eg 35 $\vec{F}(x, y)=\frac{-y \hat{i}+x \hat{j}}{\sqrt{x^{2}+y^{2}}}$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$

$$
=-\sin \theta \hat{i}+\cos \theta \hat{j} \quad \text { (in polar condiuates) }
$$

Propaties of \vec{F}
(i) $\|\vec{F}(x, y)\|=1$
(ii) $\vec{F} \perp \vec{F}(x, y)=x \hat{i}+y \hat{j}=r(\cos \hat{i}+\sin \theta \hat{j})$
e936 (Gradient vecta field of a function)
(i) $f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$

$$
\vec{\nabla} f(x, y) \stackrel{\operatorname{def}}{=}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=(x, y)=x \hat{i}+y \hat{j}=\vec{r}(x, y)
$$

position vecta field.
(ii) $f(x, y, z)=x$

$$
\vec{\nabla} f(x, y, z) \stackrel{\text { def }}{=}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \equiv(1,0,0)=\hat{i}
$$

(a constant vecta field)
eg 37 (Vector field along a conve)
Let C be a conve in \mathbb{R}^{2} parametrized by

$$
\begin{aligned}
\vec{\gamma}=[a, b] & \rightarrow \mathbb{R}^{2} \\
\Psi & \psi \\
& t \mapsto(x(t), y(t))=\vec{\gamma}(t)
\end{aligned}
$$

Recall: $\hat{T}=\frac{\vec{\gamma}^{\prime}(t)}{\left\|\bar{\gamma}^{\prime}(t)\right\|}$

$=$ unit tangent vector field along d (same paint, but different vecta)
Note: His \hat{T} defined only on C (fa a general anne), but not outside C.
(Vectu field along a curve may not come from a vecta field) on a region.

Remark: fo eg 37.
If we use $d s=\left\|\vec{\gamma}^{\prime}(t)\right\| d t$, then

$$
\hat{T}=\frac{\vec{\gamma}^{\prime}(t)}{\left\|\vec{\gamma}^{\prime}(t)\right\|}=\frac{\frac{d \vec{\gamma}}{d t}}{\frac{d s}{d t}}=\frac{d \vec{\gamma}}{d s} \quad \begin{aligned}
& \text { (by Chain rule) } \\
& \text { (if } s \text { is a function) }
\end{aligned}
$$

where "arc-lingth s" is defused by

$$
S(t)=\int_{t_{0}}^{t}\left\|\tilde{\gamma}^{\prime}(t)\right\| d t
$$

A parametrization of a cure C by arc-length s is called arc-length parametrization:

$$
\begin{aligned}
\vec{\gamma}(s) & =\operatorname{arc}-\text { length parametrization } \\
& \Rightarrow\left\|\frac{d \vec{\gamma}}{d s}(s)\right\|=1
\end{aligned}
$$

