(Contd)
Sols Intersections:

$$
\begin{aligned}
& 1=r=1+\cos \theta \\
\Leftrightarrow \quad & \cos \theta=0 \\
\Leftrightarrow \quad & \theta=\frac{\pi}{2}+k \pi \quad(k \in \mathbb{Z})
\end{aligned}
$$

$$
\text { Choose } \quad \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

$$
\begin{aligned}
\Rightarrow \iint_{R} f(x, y) d A & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\int_{1}^{1+\cos \theta} \frac{1}{r} \cdot r d r\right) d \theta \\
& =\cdots=2 \quad(\text { check }!)
\end{aligned}
$$

eg 16: Let $z=\sqrt{a^{2}-x^{2}-y^{2}}$ be a function defüed on

$$
R=\left\{(x, y)=x^{2}+y^{2} \leqslant a^{2}\right\}
$$

The graph of z is the (upper) hemisphere of radius a. Find the average height of the hemisphere.

$$
\text { Sol:: Average height } \begin{aligned}
& =\frac{1}{\text { Area }(R)} \iint_{R} z d A \\
& =\frac{1}{\pi a^{2}} \int_{0}^{2 \pi}\left(\int_{0}^{a} \sqrt{a^{2}-r^{2}} \cdot r d r\right) d \theta \\
& =\frac{2 a}{3} \quad(\text { check! })
\end{aligned}
$$

egl7 (Improper integral)
Find $\int_{-\infty}^{\infty} e^{-x^{2}} d x$
Sole:

Consider $\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A$ (Also an improper integral)

$$
\begin{aligned}
& =\lim _{\rho \rightarrow+\infty} \iint_{\left\{x^{2}+y^{2} \leqslant \rho^{2}\right\}} e^{-\left(x^{2}+y^{2}\right)} d A \\
& =\lim _{\rho \rightarrow+\infty} \int_{0}^{2 \pi}\left(\int_{0}^{\rho} e^{-r^{2}} r d r\right) d \theta \\
& =\lim _{\rho \rightarrow+\infty} \pi\left(1-e^{-\rho^{2}}\right) \\
& =\pi
\end{aligned}
$$

(Check!)

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A \\
= & \lim _{k \rightarrow+\infty} \int_{-k}^{k}\left(\int_{-k}^{k} e^{-x^{2}-y^{2}} d x\right) d y \\
= & \lim _{k \rightarrow+\infty}\left(\int_{-k}^{k} e^{-x^{2}} d x\right)\left(\int_{-k}^{k} e^{-y^{2}} d y\right) \\
= & \left(\lim _{k \rightarrow+\infty} \int_{-k}^{k} e^{-x^{2}} d x\right)^{2} \quad(\text { check! }) \\
= & \left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}
\end{aligned}
$$

Caution: we are calculators $\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A$ in two different linitoog processes. Way are they equal?
$\underline{\text { Hints }}=e^{-x^{2}}>0$ and

Triple Integrals

Refs Let $f(x, y, z)$ be a function defined on a (close dand bounded) rectangular box

$$
B=[a, b] \times[c, d] \times[r, s]
$$

Then the triple integral of f over the box B is

$$
\iiint_{B} f(x, y, z) d V=\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k}
$$

if it exists.
Where (i) $P=P_{1} \times P_{2} \times P_{3}$ is a subdivision of B into sub-rectangular boxes by partitions $P_{1}, P_{2} \& P_{3}$ of $[a, b],[c, d]$, and $[r, s]$ respectively. And

$$
\|P\|=\max \left(\left\|P_{1}\right\|,\left\|P_{2}\right\|,\left\|P_{3}\right\|\right)
$$

(ii) $\left(x_{k}, y_{k}, z_{k}\right)$ is an arbitrary point in a sub-rectangular box B_{k}

(iii) $\Delta V_{k}=V_{o l}\left(B_{k}\right)=\Delta x_{k} \Delta y_{k} \Delta z_{k}$.

Tho 4 (Fubini's Theorem fou Triple Integrals (St fam))
If $f(x, y, z)$ is continuous (in fact, "absolutely" ütegroblle is sufficient) on $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

Note: Interchanging the order of the condirates, we also have

$$
\begin{aligned}
\iiint_{B} f(x, y, z) d v & =\int_{r}^{s} \int_{a}^{b} \int_{c}^{d} f(x, y, z) d y d x d z \\
& =\cdots \text { is any adder of } d x, d y, d z
\end{aligned}
$$

Deft (Triple integral over a general region $D \subset \mathbb{R}^{3}$)
Let $f(x, y, z)$ be a function on a closed aud bounded region $D \subset \mathbb{R}^{3}$. Then

$$
\iiint_{D} f(x, y, z) d V \stackrel{d e f}{=} \iiint_{B} F(x, y, z) d V
$$

where B is a closed and bounded rectangular box containing D, and

$$
F(x, y, z)= \begin{cases}f(x, y, z), & \text { if }(x, y, z) \in D \\ 0, & \text { if }(x, y, z) \in B \backslash D\end{cases}
$$

Note: As in double integral, this definition is well-defied.

Special types of closed and bounded region $D \subset \mathbb{R}^{3}$
(1) $D=\left\{(x, y, z):(x, y) \in R_{1}, u_{1}(x, y) \leqslant z \leqslant u_{2}(x, y)\right\}$

$$
\left(u_{1}(x, y) \leqslant u_{2}(x, y), \quad u_{1} \neq u_{2}\right)
$$

(2)

$$
\begin{gathered}
D=\left\{\begin{array}{l}
(x, y, z):(x, z) \in R_{2} \\
v_{1}(x, z) \leqslant y \leqslant v_{2}(x, z)
\end{array}\right\} \\
\left(v_{1} \leqslant v_{2}, v_{1} \neq v_{2}\right)
\end{gathered}
$$

(3)

$$
\begin{gathered}
D=\left\{(x, y, z)=(y, z) \in R_{3}, w_{1}(y, z) \leqslant x \leqslant w_{2}(y, z)\right\} \\
\left(w_{1} \leqslant w_{2}, w_{1} \neq w_{2}\right)
\end{gathered}
$$

Where $R_{i}, i=1,2,3$ are Closed and bounded plane regions and $u_{1}, u_{2} ; v_{1}, v_{2} ; w_{1}, w_{2}$ are contmunow writ the corresponding variables.

Thu (Fubini's Tho fa Triple integrals (Strong fam))
Let $f(x, y, z)$ be a continuas (absolutely integrable) function on D. If D is of type (1) as above, then

$$
\iiint_{D} f(x, y, z) d v=\iint_{R_{1}}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d x d y
$$

Similarly fa types (2) and (3).

Note: Particularly, we have (using Fubin's fa double integrals) if $D=\left\{(x, y, z)=\begin{array}{l}a \leqslant x \leqslant b, \quad g_{1}(x) \leqslant y \leqslant g_{2}(x) \\ u_{1}(x, y) \leqslant \pm \leqslant u_{2}(x, y)\end{array}\right\}$
(ie. R_{1} is of type (I) as in double integrals), then

$$
\iiint_{D} f(x, y, z) d v=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d y d x
$$

Similarly for other types.

Props: The propositions 1-4 far double integrals also Gold fa triple ütegrals over closed and bounded region in \mathbb{R}^{3}.
eg 17: Volume of the bounded region D in the $1^{\text {st }}$ octant enclosed by the plane $6 x+2 y+z=12$
sole:

$$
\text { by\} ~ }
$$

$$
\begin{aligned}
& =\int_{0}^{2} \int_{0}^{6-3 x} \int_{0}^{12-6 x-2 y} 1 \cdot d z d y d x \\
& =\ldots=24 \quad \text { (Check!) }
\end{aligned}
$$

Remark: $F_{\Omega} D$ of type 1,

$$
\begin{aligned}
\operatorname{Vol}(D) & =\iiint_{D} 1 d V \stackrel{\text { Fubini }}{=} \iint_{R_{1}}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} 1 d z\right] d A \\
& =\iint_{R_{1}}\left[u_{2}(x, y)-u_{1}(x, y)\right] d A
\end{aligned}
$$

Frumela fa volume between two graphs $z=U_{2}(x, y)$ and $z=u_{1}(x, y)$.
egls: Volume of Ellipsoid

$$
D=\left\{(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leqslant 1\right\} \quad(a, b, c>0)
$$

Sorn By symmetry, we can consider the dst octant only, and $\operatorname{Vol}(D)=8$ - volume of D in the 1 st octant

$$
\begin{aligned}
& =8 \int_{0}^{a}\left(\int_{0}^{b \sqrt{1-\frac{x^{2}}{a^{2}}}} c \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} d y\right) d x \\
& =\cdots=\frac{4 \pi a b c}{3} \text { (optional exercise) }
\end{aligned}
$$

$\left[\begin{array}{l}\text { In fact, we will have a better way to calculate } \\ \text { this volenne by "change of vainables facula" (later) }\end{array}\right]$
eg 19: Find the volume of D enclosed by

$$
z=x^{2}+3 y^{2} \quad \text { and } \quad z=8-x^{2}-y^{2}
$$

bounded by the projection of the intersection curve in the $x y$-plane

Soon: Intersection curve: $x^{2}+3 y^{2}=z=8-x^{2}-y^{2}$
$\Rightarrow \quad x^{2}+2 y^{2}=4$ is the projection (in $x y$-plane) of (a ellipse) the intersection conve

So R_{1} is

$$
\begin{aligned}
\Rightarrow D & =\left\{\begin{array}{l}
(x, y) \in R_{1}=\left\{x^{2}+2 y^{2} \leqslant 4\right\}, \\
x^{2}+3 y^{2} \leqslant z \leqslant 8-x^{2}-y^{2}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
-2 \leqslant x \leqslant 2,-\sqrt{\frac{4-x^{2}}{2}} \leqslant y \leqslant+\sqrt{\frac{4-x^{2}}{2}}, \\
x^{2}+3 y^{2} \leqslant z \leqslant 8-x^{2}-y^{2}
\end{array}\right\}
\end{aligned}
$$

Fubini \Rightarrow

$$
\begin{align*}
\operatorname{Vol}(D) & =\int_{-2}^{2} \int_{-\sqrt{\frac{4-x^{2}}{2}}}^{\sqrt{\frac{4-x^{2}}{2}}} \int_{x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} 1 d z d y d x \\
& =\int_{-2}^{2} \frac{4 \sqrt{2}}{3}\left(4-x^{2}\right)^{3 / 2} d x \quad \text { (check!) } \\
& =8 \pi \sqrt{2} \quad \text { (check!) } \tag{check!}
\end{align*}
$$

[Fr those interested in the intersection (space)] amie (is parametric fam)

$$
\begin{array}{r}
x=2 \cos t, \quad y=\sqrt{2} \sin t, z=4+2 \sin ^{2} t \\
(0 \leq t \leq 2 \pi)
\end{array}
$$

