Furthermore, we have

Prop 3 : Let $R=[a, b] \times[c, d]$ be a closed rectangle, $f(x, y)$ and $g(x, y)$ be functions on R, and $k \in \mathbb{R}$ is a constant.
(1) If f \& g are integrable over R, then $f \pm g$ and $k f$ are integrable over f.
(2) In the case of (1), we have

$$
\iint_{R}[f \pm g](x, y) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

and $\quad \iint_{R} k f(x, y) d A=k \iint_{R} f(x, y) d A$.
Pf: Omitted (Obvious from the concept of Riemann sum.)

Remark: This Prop 3 implies that the set of integrable functions over (fixed) R fums a "vector space over \mathbb{R} ", "(double) integral" is linear.

Prop 4: (a) If $f(x, y) \geqslant 0$ is an integrable function on a closed rectangle R, then

$$
\iint_{R} f(x, y) d A \geqslant 0 .
$$

(b) If R_{1} and R_{2} be two closed rectangles such that jut $R_{1} \cap$ ut $R_{2}=\varnothing$, then

$$
\iint_{R_{1} \cup R_{2}} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A
$$

fa integrable function over $R_{1} \cup R_{2}$.
Pf: Omitted (Obvious from the concept of Riemann sum)
Note: Various situations for int $R_{1} \cap \operatorname{unt}_{2}=\phi$
(1)

R_{1}	R_{2}

(2)

$$
R_{1 \cap} R_{2}=\text { common edge }
$$

$$
\bar{u} t+R_{1} \cap \bar{m} R_{2}=\varnothing
$$

(3)

(4)

We haven't deffise $\iint_{R_{1} \cup R_{2}} f(x, y) d A$ far cases (2)-(4)!
Hence we need to daffae double untognols over general regions.

Double Integrals over General Regions
Fur non-rectangular bounded (closed) region R, one can define similarly the concept of "Riemann sum".

[There are two ways to fam the "sum"
(i) sum over all subrectangles caupletely inside R
(ii) sum over all subreetangles with non-empty intersection with R.

Or, one can define "the integrals" as follows

Def $2=$ Let R be a bounded region and $f(x, y)$ be a function defined on R. Far any rectangle $R^{\prime} \circ R$, define

$$
F(x, y)=\left\{\begin{array}{cl}
f(x, y), & (x, y) \in R \\
0, & (x, y) \in R^{\prime} \backslash R
\end{array}\right.
$$

Then the integral of f over R is defied by

$$
\iint_{R} f(x, y) d A=\iint_{R^{\prime}} F(x, y) d A
$$

Remark: The definition is well-defined (ie. doesn't depend on the choice of R^{\prime}) : If $R^{\prime \prime}$ is another rectangle sit. $R^{\prime \prime} \supset R$ and

$$
\widetilde{F}(x, y)= \begin{cases}f(x, y), & (x, y) \in R \\ 0, & (x, y) \in R^{\prime \prime}<R\end{cases}
$$

Then $\iint_{R^{\prime \prime}} \tilde{F}(x, y) d A=\iint_{R^{\prime}} F(x, y) d A$
(by Prop 4(b))

Prop 5: The propositions 1-4 hold if we replace "closed rectangle" by "closed and bounded region"
(together with the Prop 2')
Important special types of bounded regions R
Type (1): $R=\left\{(x, y): a \leqslant x \leqslant b, \quad g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$
where g_{1} and g_{2} are "continanas" functions on $[a, b]$.

$$
\left(g_{1} \leqslant g_{2} \text {, but } g_{1} \neq g_{2}\right)
$$

Tyre (2): $R=\left\{(x, y)=h_{1}(y) \leqslant x \leqslant h_{2}(y), c \leqslant y \leqslant d\right\}$
where h_{1} and h_{2} are "continues" functions on $[c, d]$

$$
\left(h_{1} \leqslant h_{2}, \text { but } h_{1} \neq h_{2}\right)
$$

Fa than 2 types of bounded regions, we have

Thmz (Fubine's The (Stronger version))
Let $f(x, y)$ be a continuous function on a closed and bounded region R.
(1) If R is of type (1) as above, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

(2) If R is of type (2) as above, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right) d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Pf: Type (1): Extend $f(x, y)$ to $F(x, y)$ as in the defaistia on the rectangle
$R^{\prime}=[a, b] \times[c, d]$ such that

$$
c=\min _{[a, b]} g_{1}(x), d=\max _{[a, b]} g_{2}(x)
$$

By definition 2, $\quad \iint_{R} f(x, y) d A=\iint_{R^{\prime}} F(x, y) d A$

$$
=\int_{a}^{b}\left(\int_{c}^{d} F(x, y) d y\right) d x \quad \quad \quad \text { (Fubini }(1 \text { st fam) })
$$

[f contianas on $R \Rightarrow F$ contuiucos on R^{\prime} except possibly on the boundary (covers)) of R. Hence by Prop 2, F (i nfact $|F|$) is integrable oven R^{\prime}. And the Fubine thenem (INt fam) is in fact true fa "absolutely" integrable functions os a rectangle. I

Now $F(x, y)=0$ fo $y<g_{1}(x)$ and $y>g_{2}(x)$, and $F(x, y)=f(x, y)$ for $g_{1}(x) \leqslant y \leqslant g_{2}(x)$.

$$
\therefore \quad \int_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x .
$$

Type (2) can be proved similarly.
eg 7 Integrate $f(x, y)=4 y+2$
over the region bouncled by $y=x^{2}$ and $y=2 x$. calculate!
Solus: By Fubini's,

$$
\iint_{R} f(x, y) d A=\int_{0}^{2} \int_{x^{2}}^{2 x}(4 y+2) d y d x
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left(-2 x^{4}+6 x^{2}+4 x\right) d x \quad \text { (Check!) } \\
& =\frac{56}{5} \text { (check!) }
\end{aligned}
$$

Or, using the fact that R is also of type (2):

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{y}}(4 y+2) d x d y \\
& =\int_{0}^{4}(4 y+2)\left(\sqrt{y}-\frac{y}{2}\right) d y \\
& =\cdots=\frac{56}{5} \quad \text { (check!) }
\end{aligned}
$$

eg: Evaluate $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y$.
Soln: Regard $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y$
as a double integral of $\frac{\sin x}{x}$ over the region

$$
\left\{\begin{array}{l}
y \leq x \leq 1 \\
0 \leq y \leq 1
\end{array}\right.
$$

By Fubini's

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y & =\int_{0}^{1} \int_{0}^{x} \frac{\sin x}{x} d y d x \\
& =\int_{0}^{1} \sin x d x=1-\cos 1
\end{aligned}
$$

$\left(\begin{array}{cc}\text { Caution: } & \left.f(x, y)=\frac{\sin x}{x} \text { doesn't clefīe at } x=0 \text {. Why can we cree }\right) \\ & \text { Fubini? } \quad(f(x, y) \geq 0 \text { \& cts except an a line!) }\end{array}\right)$
eg 9: Find $\iint_{R} x d A$, where R is the region in the right half-plane bounded by $y=0, x+y=0$, and the wist circle.

Sole: By Fubini's

$$
\begin{aligned}
\iint_{R} x d A & =\int_{-\frac{1}{\sqrt{2}}}^{0}\left(\int_{-y}^{\sqrt{1-y^{2}}} x d x\right) d y \\
& =\int_{-\frac{1}{\sqrt{2}}}^{0}\left(\frac{1}{2}-y^{2}\right) d y \quad \text { (check!) } \\
& =\frac{1}{3 \sqrt{2}} \quad \text { (check!) }
\end{aligned}
$$

Alternatively,

$$
\left\{x^{2}+y^{2}=1\right.
$$

$\left\{\begin{array}{l}x^{2}+y=1 \\ x+y=0\end{array}\right.$ for the point
\& get $y=-\frac{1}{\sqrt{2}}$
(reject $y=+\frac{1}{\sqrt{2}}$)

$$
\begin{aligned}
\iint_{R} x d A & =\int_{0}^{\frac{1}{\sqrt{2}}}\left(\int_{-x}^{0} x d y\right) d x+\int_{\frac{1}{\sqrt{2}}}^{1}\left(\int_{-\sqrt{1-x^{2}}}^{0} x d y\right) d x \\
& =\int_{0}^{\frac{1}{\sqrt{2}}} x^{2} d x+\int_{\frac{1}{\sqrt{2}}}^{1} x \sqrt{1-x^{2}} d x \quad(\text { chock!) } \\
& =\frac{1}{3 \sqrt{2}} \quad \text { (check!) }
\end{aligned}
$$

Applications
(1) Area (of "good" region $R \subset \mathbb{R}^{2}$)

Def $3=\operatorname{Area}(R)=\iint_{R} 1 d A$

Then Fubini's Thu implies the well-known formula

$$
\operatorname{Area}(R)=\int_{a}^{b}[f(x)-g(x)] d x
$$

if R is the region bounded by the curves $y=f(x)$ and $y=g(x)$ far $a \leqslant x \leqslant b$ (with $\left\{\begin{array}{c}f(a)=g(a) \text {, } \\ f(b)=g(b) \text {, } \\ g(x) \leqslant f(x)\end{array}\right.$

eg 10 Area bounded by $y=x^{2}$ and $y=x+2$
Sols: Solve $\left\{\begin{array}{l}y=x^{2} \\ y=x+2\end{array} \Rightarrow x=-1,2\right.$
Then Fubini's

$$
\text { Area }=\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\frac{9}{2} \quad \text { (check!) }
$$

(2) Average (of a function over a region)

Let $f: \mathbb{R}^{\subset \mathbb{R}^{2}} \rightarrow \mathbb{R}$ be an integrable function
Def 4 : The average value of f over R

$$
=\frac{1}{\text { Area }(R)} \iint_{R} f(x, y) d A
$$

eg 11 Let $f(x, y)=x \cos (x y), \quad R=[0, \pi] x[0,1]$
Find average of f over R.
Sole:

$$
\text { Average of } f \text { over } R=\frac{1}{\operatorname{Area}(R)} \iint_{R} f(x, y) d A \quad \text { (check!) }
$$

Double integral in polar condinates

$$
\begin{aligned}
& (r, \theta) \leftrightarrow(x, y) \\
& \left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right. \\
& \left\{\begin{array}{l}
a \leqslant r \leqslant b \\
c \leqslant \theta \leqslant d
\end{array}\right.
\end{aligned}
$$

Idea: $\quad \sum_{k} f\left(\right.$ poüt $\left._{k}\right) \Delta A_{k}$
what is ΔA_{k} (approximately)?

$$
\begin{aligned}
& \Delta \theta_{j}=\theta_{j}-\theta_{j-1} \\
\therefore \quad & \Delta A_{k} \simeq\left(r_{i} \Delta \theta_{j}\right) \cdot \Delta r_{i}\left(\simeq\left(r_{i-1} \Delta \theta_{j}\right) \cdot \Delta r_{i}\right)
\end{aligned}
$$

Hence $\Delta A_{k} \cong \Delta x \Delta y \simeq(r \Delta \theta) \cdot \Delta r$
So

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\iint_{R} f(x, y) \underbrace{r d x d y} \\
& =\iint_{R} f(r \cos \theta, r \sin \theta) \underbrace{r d r d \theta}
\end{aligned}
$$

Method to remember the family

$$
d A=d x d y=r d r d \theta
$$

Double integral of f over $R=\{(r, \theta): a \leqslant r \leqslant b, c \leqslant \theta \leqslant d\}$ is polar condensates is

$$
\begin{aligned}
\iint_{R} f(r \operatorname{co\theta } \theta, \sin \theta) r d r d \theta & =\int_{c}^{d}\left(\int_{a}^{b} f(r, \theta) r d r\right) d \theta \\
& =\int_{a}^{b}\left(\int_{c}^{d} f(r, \theta) d \theta\right) r d r
\end{aligned}
$$

where $f(r, \theta)$ is the simplified notation fa $f(r \cos \theta, \sin \theta)$

Remark: This is a special case of the change of variables faimela.
The "extra" facta "r" in the integrand is in fact $r=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|$ the Jacobian determinant of the change of variables.

