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Homework 6
Solutions
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(6.1) In this question, consider the following function f : R→ [0,∞)

f(t) =

{
exp(− 1

t ) : t > 0

0 : t ≤ 0
.

a) Show that f(t) is a smooth function.

b) Calculate the kth-order Taylor polynomial of f(t) at t = 0 for any k ∈ N.

c) Define the function

F (x) =
f(2− ‖x‖)

f(2− ‖x‖) + f(‖x‖ − 1)
, ∀x ∈ Rn.

Show that F is a smooth function on Rn with

0 ≤ F (x) ≤ 1, ∀x ∈ Rn.

Moreover, show that F (x) = 1 if ‖x‖ ≤ 1, and F (x) = 0 if ‖x‖ ≥ 2.

Solution (6.1)

a) By repeatedly applying the Chain Rule, we see that the composition of smooth
functions is smooth. Since − 1

t is smooth for t > 0 and et is smooth on R, by the
Chain rule, f(t) is smooth for t > 0. Similarly, f(t) ≡ 0 is smooth for t < 0.
Therefore, to show f(t) is smooth on R it suffices to show that for each n ∈ N0,

lim
t↓0

exp(−t−1) · t−n = 0.

For n = 0, the limit is clearly zero. By L’Hôpital’s rule

lim
t↓0

t−(n+1)

exp(t−1)
= lim

t↓0

−(n+ 1)t−(n+2)

−t−2 exp(t−1)
= (n+ 1) lim

t↓0

t−n

exp(t−1)
,

and we are done by induction.

b) Since the function and all its derivatives vanish at zero, Pk(t) ≡ 0 for any k ∈ N.

c) Since f ≥ 0, in order for the denominator to be zero we require that f(2−‖x‖) =
f(‖x‖ − 1) = 0. But this is only true if both 2 − ‖x‖ ≤ 0 and ‖x‖ − 1 ≤ 0,
which is impossible. Therefore, by the composition of smooth functions being
smooth, the function F (x) is well-defined and smooth everywhere on Rn. Also,
we note that f ≥ 0 implies 0 ≤ F ≤ 1.

1



Math2010E Advanced Calculus I June 2024

Finally, for ‖x‖ ≤ 1 or ‖x‖ − 1 ≤ 0, we have

F (x) =
f(2− ‖x‖)

f(2− ‖x‖) + f(‖x‖ − 1)
=
f(2− ‖x‖)
f(2− ‖x‖)

= 1.

For ‖x‖ ≥ 2 or 2− ‖x‖ ≤ 0, we have

F (x) =
f(2− ‖x‖)

f(2− ‖x‖) + f(‖x‖ − 1)
=

0

f(‖x‖ − 1)
= 0.

(6.2)

a) Suppose f : Rn → R is a continuous function such that limx→∞ f(x) = ∞.
That is

∀C ∈ R, ∃R > 0 such that ‖x‖ ≥ R =⇒ f(x) > C.

Show that f attains a global minimum on Rn.

b) Suppose g : Rn → (0,∞) is a positive continuous function such that limx→∞ g(x) =
0. That is

∀ε > 0, ∃R > 0 such that ‖x‖ ≥ R =⇒ g(x) < ε.

Show that g attains a global maximum on Rn.

c) Does the function g : Rn → (0,∞) from part b) necessarily attain a global
minimum? Justify your answer.

d) Find the global maximum of the function

h(x, y) =
1 + |x|+ |y|
1 + x2 + y2

, ∀(x, y) ∈ R2.

Solution (6.2)

a) By our assumption on f , we may find R > 0 such that f(x) ≥ f(0) when
‖x‖ ≥ R. LetA = BR(0). By EVT, f |A has a global minimum at x0 ∈ A. Since
f(x) ≥ f(0) ≥ f(x0) for any x outside of A, f has a global minimum at x0.

b) By our assumption on g, we find R > 0 such that g(x) < g(0) when ‖x‖ ≥ R.
Again, let A = BR(0). By EVT, g|A has a global maximum at x0 ∈ A. Since
g(x) < g(0) ≤ g(x0) for any x outside of A, f has a global maximum at x0.

c) No. Consider the function g : R→ R, g(t) = (1 + t2)−1.

d) h : R2 → R is a continuous positive function such that lim(x,y)→∞ h(x, y) = 0,
so by part b), h attains a global maximum. The function h is not differentiable
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at the coordinate axes. Away from the coordinate axes, by symmetry, we may
assume x, y > 0, and that

∇h(x, y) =
(
(1 + x2 + y2)− 2x(1 + x+ y)

(1 + x2 + y2)2
,
(1 + x2 + y2)− 2y(1 + x+ y)

(1 + x2 + y2)2

)
=

(
1− x2 + y2 − 2xy − 2x

(1 + x2 + y2)2
,
1 + x2 − y2 − 2xy − 2y

(1 + x2 + y2)2

)
and hence ∇h = 0 iff

1− x2 + y2 − 2xy − 2x = 0, 1 + x2 − y2 − 2xy − 2y = 0.

Subtracting these two equations from one another gives

x2 − y2 + x− y = (x− y)(x+ y + 1) = 0,

which in the region x, y > 0 has the unique solution x = y. Substituting this
back into our original equations, we find 2x2 + 2x− 1 = 0, which we solve to
find x =

√
3−1
2 (as we assumed x > 0). Therefore, h has the four critical points

(x, y) = (±
√
3− 1

2
,±
√
3− 1

2
),

away from the coordinate axes.

To analyse the critical points on the coordinate axes, from the symmetry h(x, 0) =
h(0, x), it suffices to consider the maximum of h restricted to the x-axis:

h̃(x) = h(x, 0) =
1 + |x|
1 + x2

, ∀x ∈ R.

h̃ is not differentiable at 0 with h̃(0) = 1, and away from zero we have

dh̃

dx
(x) =

sign(x)(1− x2)− 2x

(1 + x2)2
.

Since h̃ is an even function, we only need to consider the case x > 0, and so
dh̃
dx (x) = 0 iff x2 + 2x− 1 = (x+ 1−

√
2)(x+ 1+

√
2) = 0. Since x > 0, the

only solution is x =
√
2− 1. Note that

h̃(
√
2− 1) =

1

2
√
2− 2

> 1 = h̃(0),

so the maximum of h on the coordinate axes is 1
2
√
2−2 ≈ 1.207. However, at our

original critical points, we find

h

(
±
√
3− 1

2
,±
√
3− 1

2

)
=

1√
3− 1

≈ 1.366,

and therefore, h has maxima at the points (x0, y0) =
(
±
√
3−1
2 ,±

√
3−1
2

)
, with

maximal value 1√
3−1 at these points.
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(6.3) Consider the function F : R2 → R defined by

F (x, y) = sin(x) sin(y), ∀(x, y) ∈ R2.

a) Find and classify the critical points of F .

b) At each critical point, find the 2nd-order Taylor polynomial P2.

Solution (6.3)

a) We note that F is a C1 function on R2 with

∇F (x, y) = (cosx sin y, sinx cos y).

Therefore ∇F (x, y) = 0 iff sinx = sin y = 0 or cosx = cos y = 0, which
happens iff x, y ∈ πZ or x, y ∈ π

2 + πZ. The Hessian matrix is given by

HF (x, y) =

(
− sinx sin y cosx cos y
cosx cos y − sinx sin y

)
.

At the first type of critical point x, y ∈ πZ, we find that

HF (x, y) =

(
0 cosx cos y

cosx cos y 0

)
.

This has negative determinant, and is hence a saddle point. At the second type of
critical point x, y ∈ π

2 + πZ, we find that

HF (x, y) =

(
− sinx sin y 0

0 − sinx sin y

)
.

This has positive determinant sin2 x sin2 y > 0. We divide these critical points
further. Note that sinx, sin y ∈ {±1}. If sinx = sin y, then their product is 1
and the critical point is a local maximum. If sinx = − sin y, then their product is
−1 and the critical point is a local minimum.

b) Consider the saddle points (απ, βπ) with α, β ∈ Z and α + β even. Then
cos(απ) cos(βπ) = 1, and

F (απ, βπ) = 0, HF (απ, βπ) =

(
0 1
1 0

)
.

Hence the 2nd-Taylor polynomial of F at (απ, βπ) is

P2(x, y) = (x− απ)(y − βπ).

At the other saddle points (απ, βπ) with α, β ∈ Z and α + β odd, we have
cos(απ) cos(βπ) = −1, and

F (απ, βπ) = 0, HF (απ, βπ) =

(
0 −1
−1 0

)
.
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Hence the 2nd-Taylor polynomial of F at (απ, βπ) is

P2(x, y) = −(x− απ)(y − βπ).

Next, consider the local maxima (απ + π
2 , βπ + π

2 ) with α, β ∈ Z and α + β
even. Then sin(απ + π

2 ) sin(βπ + π
2 ) = 1, and

F (απ +
π

2
, βπ +

π

2
) = 1, HF (απ +

π

2
, βπ +

π

2
) =

(
−1 0
0 −1

)
.

Hence the 2nd-Taylor polynomial of F at (απ + π
2 , βπ + π

2 ) is

P2(x, y) = 1− 1

2
(x− (απ +

π

2
))2 − 1

2
(y − (βπ +

π

2
))2.

Finally consider the local minima (απ + π
2 , βπ + π

2 ) with α, β ∈ Z and α+ β
odd. Then sin(απ + π

2 ) sin(βπ + π
2 ) = −1, and

F (απ +
π

2
, βπ +

π

2
) = −1, HF (απ +

π

2
, βπ +

π

2
) =

(
1 0
0 1

)
.

Hence the 2nd-Taylor polynomial of F at (απ + π
2 , βπ + π

2 ) is

P2(x, y) = −1 +
1

2
(x− (απ +

π

2
))2 +

1

2
(y − (βπ +

π

2
))2.
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