Homework 2

Solutions

(2.1) The angle between a pair of hyperplanes in \mathbb{R}^{n} is given by the angle formed between a pair of normal vectors to each plane. We make the following convention to choose the normal vectors so that the angle between them is in the range $\left[0, \frac{\pi}{2}\right]$. With this convention the angle is well-defined and unique.

Calculate the angle $\theta \in\left[0, \frac{\pi}{2}\right]$ between the following pairs of planes:
a)

$$
P_{1}=\{x+3 y-2 z=7\}, \quad P_{2}=\{-3 x+y+2 z=0\}
$$

b)

$$
\begin{gathered}
P_{1}=\{(1,3,5)+t(-3,2,5)+s(0,0,1): t, s \in \mathbb{R}\} \\
P_{2}=\{t(-1,1,0)+s(3,3,0): t, s \in \mathbb{R}\}
\end{gathered}
$$

Solution (2.1)

a) We read off the normal vectors directly $n_{1}=(1,3,-2), n_{2}=(3,-1,-2)$. The angle between these vectors is

$$
\theta=\arccos \left(\frac{(3-3+4)}{\sqrt{14} \sqrt{14}}\right)=\arccos \left(\frac{2}{7}\right)
$$

b) $n_{1}=(-3,2,5) \times(0,0,1)=(2,3,0)$, and $n_{2}=(-1,1,0) \times(3,3,0)=$ $(0,0,-6)$. Since $n_{1} \perp n_{2}$, we conclude that $\theta=\frac{\pi}{2}$.
(2.2) For any two subsets of $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^{n}$, we defined the distance between them to be

$$
\inf _{A \in \mathcal{A}, B \in \mathcal{B}}\|\overrightarrow{A B}\|
$$

a) For any two orthogonal vectors $x, y \in \mathbb{R}^{n}$, show that

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

b) Let $\mathcal{A}=\{A\} \in \mathbb{R}^{3}$ be a single point and $\mathcal{B} \subseteq \mathbb{R}^{3}$ a plane.

Show that there is a unique point $B \in \mathcal{B}$ such that $\overrightarrow{A B}$ is orthogonal to \mathcal{B}.
c) Conclude that the distance between \mathcal{A} and \mathcal{B} is $\|\overrightarrow{A B}\|$.

Solution (2.2)

a) Expanding the dot product of $x+y$ with itself, we have

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2 \underbrace{x \cdot y}_{=0}=\|x\|^{2}+\|y\|^{2} .
$$

b) Without loss of generality, we may translate \mathbb{R}^{n} so that \mathcal{B} passes through the origin.
A generic point $x \in \mathcal{B}$ is given by

$$
x=t_{1} \cdot v_{1}+t_{2} \cdot v_{2}, \quad t_{1}, t_{2} \in \mathbb{R},
$$

for linearly independent vectors $v_{1}, v_{2} \in \mathbb{R}^{3}$. By the exercise from the lectures, we may assume that v_{1}, v_{2} are orthonormal.
Consider the vector from A to a point $C \in \mathcal{B}$

$$
\overrightarrow{A C}=t_{1} \cdot v_{1}+t_{2} \cdot v_{2}-\overrightarrow{O A}
$$

In order for $\overrightarrow{A C}$ to be orthogonal to \mathcal{B}, we require that $\overrightarrow{A C} \cdot v_{1}=\overrightarrow{A C} \cdot v_{2}=0$. Since

$$
\overrightarrow{A C} \cdot v_{1}=t_{1} \underbrace{v_{1} \cdot v_{1}}_{=1}+t_{2} \underbrace{v_{2} \cdot v_{1}}_{=0}-\overrightarrow{O A} \cdot v_{1}=t_{1}-\overrightarrow{O A} \cdot v_{1},
$$

it follows that $t_{1}=\overrightarrow{O A} \cdot v_{1}$. Similarly, $t_{2}=\overrightarrow{O A} \cdot v_{2}$, and therefore $B \in \mathcal{B}$ is the unique point

$$
B=\left(\overrightarrow{O A} \cdot v_{1}\right) v_{1}+\left(\overrightarrow{O A} \cdot v_{2}\right) v_{2}
$$

c) Using part b), for any $C \in \mathcal{B}$, we can decompose the vector

$$
\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C},
$$

where $\overrightarrow{A B} \cdot \overrightarrow{B C}=0$. Therefore by part a)

$$
\|\overrightarrow{A B}\| \leq \sqrt{\|\overrightarrow{A B}\|^{2}+\|\overrightarrow{B C}\|^{2}}=\|\overrightarrow{A C}\|, \quad \forall C \in \mathcal{B},
$$

and hence $\|\overrightarrow{A B}\|$ is the distance between \mathcal{A} and \mathcal{B} by definition.
(2.3) Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a C^{1}-curve. We define the sphere of radius $r>0$ at the origin in \mathbb{R}^{n} by

$$
\mathbb{S}_{r}:=\partial B_{r}(0)=\left\{x \in \mathbb{R}^{n}:\|x\|=r\right\} .
$$

Suppose that $\gamma(t)$ is orthogonal to $\gamma^{\prime}(t)$ for every $t \in \mathbb{R}$. If $\gamma(0)$ is non-zero, show that the curve lies within a sphere. More precisely, show that there exists $r>0$ such that

$$
\gamma(t) \in \mathbb{S}_{r}, \quad \forall t \in \mathbb{R} .
$$

Solution (2.3) Differentiating the length of $\gamma(t)$ in t, we have

$$
\frac{d}{d t}\|\gamma(t)\|^{2}=2 \gamma(t) \cdot \gamma^{\prime}(t)=0
$$

and therefore the length of $\gamma(t)$ is independent of t. Since $r:=\|\gamma(0)\|>0$ by assumption, the curve must always remain in S_{r}.
(2.4) Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a curve. Suppose in polar coordinates we have

$$
\gamma(t)=(r(t), \theta(t)), \quad \forall t \in I
$$

a) Show that the length of the tangent vector at t in polar coordinates is given by the equation

$$
\left\|\gamma^{\prime}(t)\right\|=\sqrt{r^{\prime}(t)^{2}+r^{2}(t) \theta^{\prime}(t)^{2}}
$$

b) For $k>0$, the logarithmic spiral can be parameterised in polar coordinates as

$$
\left\{\begin{array}{l}
r(t)=e^{-k t} \\
\theta(t)=t,
\end{array} \quad \forall t \in[0, \infty)\right.
$$

Calculate the arc-length of this curve for each $k>0$.

Solution (2.4)

a) Recall that in Cartesian coordinates, we have

$$
\begin{aligned}
x(t) & =r(t) \cos \theta(t) \\
y(t) & =r(t) \sin \theta(t)
\end{aligned}
$$

Differentiating with respect to t yields:

$$
\begin{aligned}
x^{\prime}(t) & =r^{\prime}(t) \cos \theta(t)-r(t) \theta^{\prime}(t) \sin \theta(t) \\
y(t) & =r^{\prime}(t) \sin \theta(t)+r(t) \theta^{\prime}(t) \cos \theta(t)
\end{aligned}
$$

Substituting these formula into the equation for the length of the tangent vector in Cartesian coordinates gives

$$
\begin{aligned}
\left\|\gamma^{\prime}(t)\right\|^{2}= & x^{\prime}(t)^{2}+y^{\prime}(t)^{2} \\
= & \left(r^{\prime} \cos \theta-r \theta^{\prime} \sin \theta\right)^{2}+\left(r^{\prime} \sin \theta+r \theta^{\prime} \cos \theta\right)^{2} \\
= & r^{\prime 2} \cos ^{2} \theta+r^{2} \theta^{\prime 2} \sin ^{2} \theta-2 r r^{\prime} \theta^{\prime} \cos \theta \sin \theta \\
& +r^{\prime 2} \sin ^{2} \theta+r^{2} \theta^{\prime 2} \cos ^{2} \theta+2 r r^{\prime} \theta^{\prime} \cos \theta \sin \theta \\
= & \left(r^{\prime}\right)^{2}+r^{2}\left(\theta^{\prime}\right)^{2} .
\end{aligned}
$$

b) Since $r^{\prime}(t)=-k e^{-k t}$ and $\theta^{\prime}(t)=1$, using the formula from part a) we have

$$
\begin{aligned}
\left\|\gamma^{\prime}(t)\right\| & =\sqrt{r^{\prime}(t)^{2}+r^{2}(t) \theta^{\prime}(t)^{2}} \\
& =\sqrt{k^{2} e^{-2 k t}+e^{-2 k t}} \\
& =e^{-k t} \sqrt{k^{2}+1}
\end{aligned}
$$

and therefore the arc length of the log-spiral is

$$
\begin{aligned}
S=\int_{0}^{\infty}\left\|\gamma^{\prime}(t)\right\| d t & =\int_{0}^{\infty} e^{-k t} \sqrt{k^{2}+1} d t \\
& =\sqrt{k^{2}+1}\left(\left.\frac{-e^{-k t}}{k}\right|_{0} ^{\infty}\right. \\
& =\frac{\sqrt{k^{2}+1}}{k}
\end{aligned}
$$

Remark: As $k \downarrow 0$, the length tends to ∞ as the spiral approaches an infinitely wound unit circle, and as $k \uparrow \infty$, the length tends to 1 as the spiral approaches the line segment joining the point $(1,0)$ to the origin.

