Homework 1

Solutions

(1.1) Let $u=(1,-2,1), v=(0,2,3)$ and $w=(2,0,-1)$ be vectors in \mathbb{R}^{3}. Find $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
(1,1,1)=\alpha u+\beta v+\gamma w
$$

Solution (1.1) From a simple calculation we find that

$$
(1,1,1)=0 \cdot u+\frac{1}{2} \cdot v+\frac{1}{2} \cdot w
$$

(1.2) Let $x, y \in \mathbb{R}^{n}$.
a) Show that either $(x+y) \cdot x \geq 0$, or $(x+y) \cdot y \geq 0$.
b) Assume now that x and y are non-zero vectors of the same length. Show that, if the vector $x+y$ is non-zero, then it bisects the angle between x and y.

Solution (1.2)

a) It follows from the inequality

$$
0 \leq\|x+y\|^{2}=(x+y) \cdot x+(x+y) \cdot y
$$

that one of the two values must be non-negative.
b) We first note that

$$
(x+y) \cdot x=\|x\|+x \cdot y=\|y\|+x \cdot y=(x+y) \cdot y
$$

Therefore, as $x+y \neq 0$, we have the equality

$$
\frac{(x+y) \cdot x}{\|x+y\|\|x\|}=\frac{(x+y) \cdot y}{\|x+y\|\|y\|}
$$

Taking arccos of both sides, the result follows.
(1.3) For some $m \in \mathbb{N}$, let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ be unit vectors. The centre of mass of these vectors is defined to be

$$
C:=\frac{1}{m} \sum_{i=1}^{m} x_{i} \in \mathbb{R}^{n}
$$

a) Show that the length of C is less than or equal to 1 .
b) When does the length of C equal 1? Justify your answer.

Solution (1.3)

a) By iterating the triangle inequality, it follows that

$$
\|C\| \leq \frac{1}{m} \sum_{i=1}^{m}\left\|x_{i}\right\|=\frac{1}{m} \sum_{i=1}^{m} 1=1 .
$$

b) Equality holds in the above inequality iff it holds in each application of the triangle inequality iff $x_{1}=\lambda_{i} x_{i}$ for some $\lambda_{i} \geq 0$, for every $i \in\{1, \ldots, m\}$. However, since the vectors are unit vectors, this means that λ_{i} must always be 1 , and so the center of mass has length 1 iff all of the x_{i} agree.

