Homework 3

Please submit, through Blackboard, solutions to all of the following problems. The deadline for submissions is 18:00 on Monday 3rd June 2024. Please let me know if any of the problems are unclear or have typos.

(3.1)

a) Let $x_{0} \in \mathbb{R}^{n}$ and $r>0$. Show that the set

$$
B_{r}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\|<r\right\},
$$

is an open set.
This justifies naming $B_{r}\left(x_{0}\right)$ an open ball.
b) Show that, for a pair of open sets X_{1}, X_{2}, their union $X_{1} \cup X_{2}$ is also an open set.
c) Show that, for a pair of open sets X_{1}, X_{2}, their intersection $X_{1} \cap X_{2}$ is also an open set.
d) Suppose now we have a (not necessarily finite) collection of open sets

$$
\left\{X_{\alpha}: \alpha \in \mathcal{A}\right\}
$$

Is their union $U:=\bigcup_{\alpha \in \mathcal{A}} X_{\alpha}$ necessarily open? Justify your answer.
e) Is their intersection $C:=\bigcap_{\alpha \in \mathcal{A}} X_{\alpha}$ necessarily open? Justify your answer.
(3.2) Let $A \subseteq \mathbb{R}^{n}$ and consider the set of vectors whose distance to A is zero:

$$
\left\{x \in \mathbb{R}^{n}: \forall \epsilon>0, \exists a \in A \text { such that }\|x-a\|<\epsilon\right\}
$$

Show that this set is the same as the closure of A :

$$
\bar{A}=\operatorname{Int}(A) \cup \partial A .
$$

(3.3) For the following examples, does the limit exist, and if so, what is its value?
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x y}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x+y}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x^{2}+y^{2}}$
(3.4) Consider the rational function

$$
Q(x, y)=\frac{x^{6}-x^{5} y+x y^{5}-y^{6}}{x y^{3}-x^{3} y}
$$

What is the largest subset of the plane $\Omega \subseteq \mathbb{R}^{2}$ on which we can extend Q to a continuous function? Justify your answer.
(3.5) We say a real number is rational if it can be expressed as a ratio of two integers. We denote the collection of all rational numbers as

$$
\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}
$$

At which points in \mathbb{R}^{3} is the following function continuous?

$$
f(x, y, z):= \begin{cases}x+y-z & : x, y, z \in \mathbb{Q} \\ 1 & : \text { otherwise }\end{cases}
$$

Justify your answer.

