Homework 2

Please submit, through Blackboard, solutions to all of the following problems. The deadline for submissions is 18:00 on Monday 27th May 2024. Please let me know if any of the problems are unclear or have typos.
\qquad
(2.1) The angle between a pair of hyperplanes in \mathbb{R}^{n} is given by the angle formed between a pair of normal vectors to each plane. We use the convention that our choice of normal vectors form an angle between them in the range $\left[0, \frac{\pi}{2}\right]$. With this convention the angle is well-defined and unique.

Calculate the angle $\theta \in\left[0, \frac{\pi}{2}\right]$ between the following pairs of planes:
a)

$$
P_{1}=\{x+3 y-2 z=7\}, \quad P_{2}=\{-3 x+y+2 z=0\} .
$$

b)

$$
\begin{aligned}
P_{1}= & \{(1,3,5)+t(-3,2,5)+s(0,0,1): t, s \in \mathbb{R}\}, \\
& P_{2}=\{t(-1,1,0)+s(3,3,0): t, s \in \mathbb{R}\} .
\end{aligned}
$$

(2.2) For any two subsets of $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^{n}$, we defined the distance between them to be

$$
\inf _{A \in \mathcal{A}, B \in \mathcal{B}}\|\overrightarrow{A B}\|
$$

a) For any two orthogonal vectors $x, y \in \mathbb{R}^{n}$, show that

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

b) Let $\mathcal{A}=\{A\} \in \mathbb{R}^{3}$ be a single point and $\mathcal{B} \subseteq \mathbb{R}^{3}$ a plane.

Show that there is a unique point $B \in \mathcal{B}$ such that $\overrightarrow{A B}$ is orthogonal to \mathcal{B}.
c) Conclude that the distance between \mathcal{A} and \mathcal{B} is $\|\overrightarrow{A B}\|$.
(2.3) Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a C^{1}-curve. We define the sphere of radius $r>0$ at the origin in \mathbb{R}^{n} by

$$
\mathbb{S}_{r}:=\partial B_{r}(0)=\left\{x \in \mathbb{R}^{n}:\|x\|=r\right\}
$$

Suppose that $\gamma(t)$ is orthogonal to $\gamma^{\prime}(t)$ for every $t \in \mathbb{R}$. If $\gamma(0)$ is non-zero, show that the curve lies within a sphere. More precisely, show that there exists $r>0$ such that

$$
\gamma(t) \in \mathbb{S}_{r}, \quad \forall t \in \mathbb{R}
$$

(2.4) Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a curve. Suppose in polar coordinates we have

$$
\gamma(t)=(r(t), \theta(t)), \quad \forall t \in I
$$

a) Show that the speed of the curve in polar coordinates is given by the equation

$$
\left\|\gamma^{\prime}(t)\right\|=\sqrt{r^{\prime}(t)^{2}+r^{2}(t) \theta^{\prime}(t)^{2}}
$$

b) For $k>0$, the logarithmic spiral can be parameterised in polar coordinates as

$$
\left\{\begin{array}{l}
r(t)=e^{-k t} \\
\theta(t)=t,
\end{array} \quad \forall t \in[0, \infty)\right.
$$

Calculate the arc-length of this curve for each $k>0$.

