Homework 2

Please submit, through Blackboard, solutions to *all* of the following problems. The deadline for submissions is 18:00 on Monday 27th May 2024. Please let me know if any of the problems are unclear or have typos.

.....

(2.1) The angle between a pair of hyperplanes in \mathbb{R}^n is given by the angle formed between a pair of normal vectors to each plane. We use the convention that our choice of normal vectors form an angle between them in the range $[0, \frac{\pi}{2}]$. With this convention the angle is well-defined and unique.

Calculate the angle $\theta \in [0, \frac{\pi}{2}]$ between the following pairs of planes:

a)

$$P_1 = \{x + 3y - 2z = 7\}, \quad P_2 = \{-3x + y + 2z = 0\}.$$

b)

$$P_1 = \{(1,3,5) + t(-3,2,5) + s(0,0,1) : t, s \in \mathbb{R}\},\$$
$$P_2 = \{t(-1,1,0) + s(3,3,0) : t, s \in \mathbb{R}\}.$$

(2.2) For any two subsets of $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^n$, we defined the distance between them to be

$$\inf_{A\in\mathcal{A},B\in\mathcal{B}}\|\overrightarrow{AB}\|.$$

a) For any two orthogonal vectors $x, y \in \mathbb{R}^n$, show that

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

b) Let $\mathcal{A} = \{A\} \in \mathbb{R}^3$ be a single point and $\mathcal{B} \subseteq \mathbb{R}^3$ a plane.

Show that there is a unique point $B \in \mathcal{B}$ such that \overrightarrow{AB} is orthogonal to \mathcal{B} .

c) Conclude that the distance between \mathcal{A} and \mathcal{B} is $\|\overrightarrow{AB}\|$.

(2.3) Let $\gamma : \mathbb{R} \to \mathbb{R}^n$ be a C^1 -curve. We define the sphere of radius r > 0 at the origin in \mathbb{R}^n by

$$\mathbb{S}_r := \partial B_r(0) = \{ x \in \mathbb{R}^n : ||x|| = r \}.$$

Suppose that $\gamma(t)$ is orthogonal to $\gamma'(t)$ for every $t \in \mathbb{R}$. If $\gamma(0)$ is non-zero, show that the curve lies within a sphere. More precisely, show that there exists r > 0 such that

$$\gamma(t) \in \mathbb{S}_r, \quad \forall t \in \mathbb{R}.$$

(2.4) Let $\gamma: I \to \mathbb{R}^2$ be a curve. Suppose in polar coordinates we have

$$\gamma(t) = (r(t), \theta(t)), \quad \forall t \in I.$$

a) Show that the speed of the curve in polar coordinates is given by the equation

$$\|\gamma'(t)\| = \sqrt{r'(t)^2 + r^2(t)\theta'(t)^2}.$$

b) For k > 0, the logarithmic spiral can be parameterised in polar coordinates as

$$\begin{cases} r(t) = e^{-kt} \\ \theta(t) = t, \end{cases} \quad \forall t \in [0, \infty). \end{cases}$$

Calculate the arc-length of this curve for each k > 0.