Homework 1

Please submit, through Blackboard, solutions to all of the following problems. The deadline for submissions is 18:00 on Monday 20th May 2024. Please let me know if any of the problems are unclear or have typos.
(1.1) Let $u=(1,-2,1), v=(0,2,3)$ and $w=(2,0,-1)$ be vectors in \mathbb{R}^{3}. Find $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
(1,1,1)=\alpha u+\beta v+\gamma w
$$

(1.2) Let $x, y \in \mathbb{R}^{n}$.
a) Show that either $(x+y) \cdot x \geq 0$, or $(x+y) \cdot y \geq 0$.
b) Assume now that x and y are non-zero vectors of the same length. Show that, if the vector $x+y$ is non-zero, then it bisects the angle between x and y.
(1.3) For some $m \in \mathbb{N}$, let $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ be unit vectors. The centre of mass of these vectors is defined to be

$$
C:=\frac{1}{m} \sum_{i=1}^{m} x_{i} \in \mathbb{R}^{n}
$$

a) Show that the length of C is less than or equal to 1 .
b) When does the length of C equal 1? Justify your answer.

