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1.1 Euclidean space R”

In this course, we are concerned with the analysis of functions between finite dimensional vector
spaces over the real numbers R. For some fixed dimension n € N, up to isomorphism such a
vector space is n-dimensional Euclidean space R".

R'=RX---XxR={(x1,...,xn) :x; €R, Vie{l,...,n}}.
————
n—times
A
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Notation: In these printed notes we will use regular lettering x = (xy,...,x,) € R" to denote
a vector, with subscripts denoting the component of such a vector in Cartesian coordinates. In

some cases, we will also use capital letters A, B, C, ... to represents points within R”, and use AB
to denote the vector starting from point A and ending at point B.

Basic Operations on Vectors
Letx = (x1,...,x) € R", y = (y1,...,Yn) € R" be a pair of vectors and A € R a scalar.
* Equality: x =y & x; =y;, forallie {1,...,n}.
"Two vectors are the same if and only if all of their components agree.’

o Addition: x +y = (x1 + y1,..., Xp + Yp).

"Vectors are summed component wise.’
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¢ Scalar multiplication: Ax = (Axy, ..., Axy).

’Scaling a vector scales all of its components by the same amount.’
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Length and the Dot Product

As well as the usual vector space structure of R”, we also equip it with its natural inner product,
known as the dot product.

Definition 1. For any pair of vectors x,y € R" we define their dot product to be

For any vector x € R"™ we define its (Euclidean) length ||x|| via the equation
x| =x-x=x?+--+x2
We note that the dot product is a map R” X R" — R. Moreover 0 - x = 0, for every x € R".

Remark. In dimension n < 3, ||x|| agrees with the usual notion of length you calculate by
applying the Pythagorean theorem.

Lemma 1. Let x,y,z € R" and A € R. Then the dot product enjoys the following properties.
a) x-y=y-x
b) (x+y)-z=x-z+y-z
c) (Ax) -y =Ax-y) =x- (Ay).

d) x-x >0, with equality iff x =0 € R".
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e) Ifx#0andy # 0, then x - y = ||x||||y|| cos 6,

where 0 is the size of the angle formed between the vectors x and y.

Proof. Properties a)-d) follow trivialy from the definitions and are left as an exercise. To show e)
we first consider the case where ¢ € [0, 7]. By the definition of the dot product, we have

ly —x|I*=(y—x) - (y —x)
Sy yYy-x-y-y-x+x-x
= [lyl|® + ||x]|* = 2x - y.

Alternatively, by the Pythagorean theorem

lly = xII* = (lIxIl = llyll cos 8)* + (llyll sin 6)”
= llyll® + 11x11* = 2llx|lllyll cos 6.

Comparing the two gives the result for 6 € [0, Z]. Finally, if 0 € (7, 7], we consider instead the
vectors x and —y, which now form an angle of size = — 6 € [0, Z). We may then apply the above
result to conclude that

x - (=y) = llxllll-yll cos(x - 6).
Since x - (-y) = —(x - y), [|-y|l = llyl|, and cos(;r — 8) = — cos(0), the result follows. O

Remark. For any two vectors x,y € R" which form an angle of size 0,

x and y are orthogonal — ng & cos(f) =0 & x-y=0.

The following is a simple lemma which states that the diagonals of a parallelogram are
orthogonal to each other if and only if the parallelogram is in fact a rhombus.

Lemma 2. For any two vectors x,y € R", x +y is orthogonal to x — y if and only if x and y have
the same length.

Proof. From the previous remark, x + y and x — y are orthogonal iff (x +y) - (x —y) =0, buta
direct calculation leads to

(x+y) - (x-y) =x-x+x-y-x-y—y-y=|xI"-llyl’

from which the result follows immediately. |
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As an application of the previous lemma, we give a simple proof that for any triangle lying on

. k . . . o
a circle with one edge given by a diameter, the opposite angle is 7.

—> — — — .
If x =0C and y = AO, then AC = x + y and BC = x — y. Since the length of x and y are the
same (the radius of the circle) by the previous lemma, these two vectors are orthogonal.

Cauchy-Schwarz and the Triangle Inequality.

The following is an important inequality which bounds the size of the dot product by the product
of the lengths.

Lemma 3 (Cauchy-Schwarz inequality). For any x,y € R",
I -yl < lixlllyll- (1.1

Moreover, equality holds if and only if x and y are parallel. That is, x = Ay or y = Ax for some
LeR

Remark. Forn < 3, this follows immediately from the equality x - y = ||x||||y|| cos 6.

Proof. If y = 0 € R", then the result is trivially true with y = 0 - x. Therefore, we may assume
throughout the proof that y # 0. For any A € R, we consider the quantity

0 < [lx = Ayl = (x = Ay) - (x = Ay) = [Ix[|* = 24x - y + A% [y *. (1.2)
As y # 0, we may choose A := ”Xy—ﬁ/z € Rin (1.2), which simplifies to
x -yl
[l - > 0.
llyll?

Rearranging, we can conclude (1.1) holds. Moreover, equality in (1.1) holds iff ||x — Ay|| = 0 for
our choice of A, which happens iff x and y are parallel. O

Remark. Let x,y € R" be non-zero vectors. For n < 3, we proved that
x -y = |lx[l|lyll cos 6.

Rearranging, we have

Q:arccos( *'Y )E [0, z].
lIx[llyll

For any n € N, Cauchy-Schwarz implies that

XY

-1< <
lxllllyll

Thus, we can define

Q:arccos( i ) € [0, z],
llx Iyl

to be the angle between x and y in all dimensions.
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Example 4. For the pair of vectors x = (1,5,2,3,4),y = (3,3,1,1,0) € R, we have
x-x=255 y-y=20, x-y=23.

Therefore, the angle between them is 8 = arccos (\2/—%) .

Just like for the absolute value in R, the triangle inequality holds for the length of vectors in
R”™ as well.

Lemma 5. Forany x,y € R",
llx +yll < llx|l + [lyll- (1.3)

Moreover, equality holds if and only if x = Ay or y = Ax for some A > 0.

Proof. By expanding the dot product and using the Cauchy-Schwarz inequality

llx+yll” = llxll® + 2x - y + [lylI*
< [lxll* + 2 x -yl + Ilyll®
< [lxlf® + 2l iyl + 1y 1I*
= (llxll + llyID*,

which is precisely (1.3). Moreover, we have equality in (1.3) iff we have equality in Cauchy-
Schwarz and x - y = |x - y|, which happens iff x is parallel to y with A > 0. O

The Cross Product

For this section, we restrict our attention to the case n = 3.
Before stating the definition of the cross product of two vectors in R3, we recall that the
determinant of a 2 X 2 matrix is

a b
=ad — be,
d‘
and for a 3 X 3 matrix

a dz as

b, b by b by b
bl bz b3 =a; 2 3—02 ! 3+(13 ! 2.

C2 C3 C1 C3 1 C
1 C2 C3

Definition 2. For any two vectors x = (x1,%2,%3),y = (y1,y2,y3) € R>, we define thie cross
product to be

~ N A

ik )
xxy=l x owl=[2 i B Pk er? (1.4)
Y2 U3 Y1 U3 Y1 Yo
Yr Y2 Y3

where i = (1,0,0), f: (0,1,0) and k = (0,0,1).
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Example 6. If x = (2,3,4) and y = (1, 2,3), then

el 5B A e o
XY= T3t Th o3l Th o2
1 2 3
=i-2j+k
= (1,-2,1)
Remark. L e A A .
| X 1 =0, iXj=k IiXk=-j,
jxi=-k jxj=0 = jxk=i,
kxi=j, kxj=-i, kxk=0.

The cross product satisfies the right hand rule.

Properties of the Cross Product
Letx,y,z € R*and a, B € R.
a) xXXy=-YyXx
b) (ax+ py) Xxz=a(xxz)+ p(y X z).
c) (xXy)-x=(xXy)- y=0,s0x Xy is orthogonal to the plane spanned by x and y.
d) If 0 denotes the angle between x and y, then
llx > yll = IIxllllyll sin 6,
which is equal to the area of the parallelogram generated by x and y.

Proof. Propertties a)-c) follow follow directly from the definition and are left as an Exercise. To
show d) we begin by expanding the term (x X y) - (x X y), and find that

e x yll* = llxlPllyll® = (x - y)°
= llxlPllyll* (1 = cos*(6))
= llxl?[lyll* sin® (6).

Note that the area is given by the base ||x|| times the height ||y|| sin 6. O

Remark. In the case that x,y € R2, we see that

P k X1 x| 2
xXy=|x; xp 0= yl yz ) (1.5)
yi oy 0 1 Y2

and 50 ||x X y|| = x1yz — %2y,
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Triple Product

For any x, y, z € R®, we define their triple product as (x X y) - z € R.
Unravelling the definition, we see that

~ A~ A

i j k| [z Z1 2o 23 X1 Xy X3
(xxy)-z=|x1 x2 xs|-|z2]|=a1 x2 x|=|y1 y2 ys|. (1.6)
Yr Y2 Y3 Z3 Yyr Y2 Y3 Z1 22 Z3

It follows from (1.6) that

(xxy)-z=(yXz) x=(zXx) y=-(yxXx) - z=—(zxXy) - x=-(xX2)y
The triple product has the following geometric interpretation.
Lemma 7. |(x X y) - z| is the volume of the parallelepiped spanned by x,y and z.

Proof. Let a denote the angle formed between the vector x X y and z.

Note that, after possibly replacing x X y with y X x, we may assume that « € [0, 7].

Since (x X y) - z = ||x X y||||z]| cos @, and our parallelepiped has base area ||x X y|| and height
||z|| cos «, the result follows. O

Remark. The triple product (x X y) - z = 0 iff the volume of the parallelepiped vanishes iff
{x,y, z} are linearly dependent.

Example 8. Consider the parallelepiped spanned by the vectors (1, 1,0), (0,1,0), (1,1,1) € R3.
The triple product of these three vectors is

1
0
1

[SE G

0
0f =1,
1
and therefore the parallelepiped has unit volume.

1.2 Affine Subspaces
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