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Week 1

1.1 Euclidean Space

In this course, we are concerned with the analysis of functions between finite dimensional vector
spaces over the real numbers R. For some fixed dimension = ∈ N, up to (linear) isomorphism
such a vector space is =-dimensional Euclidean space R=.

R= = R × · · · × R︸        ︷︷        ︸
=−C8<4B

= {(G1, . . . , G=) : G8 ∈ R, ∀8 ∈ {1, . . . , =}}.

Notation: In these printed notes we will use regular lettering G = (G1, . . . , G=) ∈ R= to denote
a vector, with subscripts denoting the component of such a vector in Cartesian coordinates. In
some cases, we will also use capital letters �, �,�, . . . to represents points within R=, and use

−→
��

to denote the vector starting from point � and ending at point �.

Basic Operations on Vectors

Let G = (G1, . . . , G=) ∈ R=, ~ = (~1, . . . , ~=) ∈ R= be a pair of vectors and _ ∈ R a scalar.

• Equality: G = ~ ⇐⇒ G8 = ~8 , for all 8 ∈ {1, . . . , =}.
’Two vectors are the same if and only if all of their components agree.’

• Addition: G + ~ = (G1 + ~1, . . . , G= + ~=).
’Vectors are summed component wise.’
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• Scalar multiplication: _G = (_G1, . . . , _G=).
’Scaling a vector scales all of its components by the same amount.’

Length and the Dot Product

As well as the usual vector space structure of R=, we also equip it with its natural inner product,
known as the dot product.

Definition 1.1. For any pair of vectors G,~ ∈ R= we define their dot product to be

G · ~ :=
=∑
8=1

G8~8 ∈ R.

For any vector G ∈ R= we define its (Euclidean) length ‖G ‖ via the equation

‖G ‖2 := G · G = G21 + · · · + G2= .

We note that the dot product is a map R= × R= → R which takes a pair of vectors and returns a
scalar value.

Remark. In dimension = ≤ 3, ‖G ‖ agrees with the usual notion of length you calculate by
applying the Pythagorean theorem.

Lemma 1. Let G,~, I ∈ R= and _ ∈ R. The dot product enjoys the following properties.

a) G · ~ = ~ · G .

b) (G + ~) · I = G · I + ~ · I.

c) (_G) · ~ = _(G · ~) = G · (_~).
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d) G · G ≥ 0, with equality iff G = 0 ∈ R=.

e) If G ≠ 0 and ~ ≠ 0, then G · ~ = ‖G ‖‖~‖ cos\ ,

where \ is the size of the angle formed between the vectors G and ~.

Proof. Properties a)-d) follow trivialy from the definitions and are left as an exercise. To show e)
we first consider the case where \ ∈ [0, c2 ]. By the definition of the dot product, we have

‖~ − G ‖2 = (~ − G) · (~ − G)
= ~ · ~ − G · ~ − ~ · G + G · G
= ‖~‖2 + ‖G ‖2 − 2G · ~.

Alternatively, by the Pythagorean theorem

‖~ − G ‖2 = (‖G ‖ − ‖~‖ cos\ )2 + (‖~‖ sin\ )2

= ‖~‖2 + ‖G ‖2 − 2‖G ‖‖~‖ cos\ .

Comparing the two gives the result for \ ∈ [0, c2 ]. Finally, if \ ∈ ( c2 , c], we consider instead the
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vectors G and −~, which now form an angle of size c − \ ∈ [0, c2 ). We may then apply the above
result to conclude that

G · (−~) = ‖G ‖‖−~‖ cos(c − \ ) .

Since G · (−~) = −(G · ~), ‖−~‖ = ‖~‖, and cos(c − \ ) = − cos(\ ), the result follows. �

Remark. For any two vectors G,~ ∈ R= which form an angle of size \ ,

G and ~ are orthogonal ⇐⇒ \ =
c

2
⇐⇒ cos(\ ) = 0 ⇐⇒ G · ~ = 0.

The following is a simple lemma which states that the diagonals of a parallelogram are
orthogonal to each other if and only if the parallelogram is in fact a rhombus.

Lemma 2. For any two vectors G,~ ∈ R=, G +~ is orthogonal to G −~ if and only if G and ~ have
the same length.

Proof. From the previous remark, G + ~ and G − ~ are orthogonal iff (G + ~) · (G − ~) = 0, but a
direct calculation leads to

(G + ~) · (G − ~) = G · G + G · ~ − G · ~ − ~ · ~ = ‖G ‖2 − ‖~‖2,

from which the result follows immediately. �

As an application of the previous lemma, we give a simple proof that for any triangle lying on
a circle with one edge given by a diameter, the opposite angle is c

2 .
If �, �,� denote the vertices of the triangle with � and � lying on the diameter and $ denoting

the centre of the circle, then
−−→
�$ = −−→�$ , and hence

−→
�� =

−−→
$� + −−→�$, −→�� =

−−→
$� − −−→�$.

Since the lengths of
−−→
$� and

−−→
�$ are the same (the radius of the circle), we can apply the previous

lemma to conclude that
−→
�� and

−→
�� are orthogonal.
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Cauchy-Schwarz and the Triangle Inequality.

The following is an important inequality which bounds the size of the dot product by the product
of the lengths.

Lemma 3 (Cauchy-Schwarz inequality). For any G,~ ∈ R=,

|G · ~ | ≤ ‖G ‖‖~‖. (1.1)

Moreover, equality holds if and only if G and ~ are parallel. That is, G = _~ or ~ = _G for some
_ ∈ R.

Remark. For = ≤ 3, this follows immediately from the equality G · ~ = ‖G ‖‖~‖ cos\ .

Proof. If ~ = 0 ∈ R=, then the result is trivially true with ~ = 0 · G . Therefore, we may assume
throughout the proof that ~ ≠ 0. For any _ ∈ R, we consider the quantity

0 ≤ ‖G − _~‖2 := (G − _~) · (G − _~) = ‖G ‖2 − 2_G · ~ + _2‖~‖2. (1.2)

As ~ ≠ 0, we may choose _ := G ·~
‖~ ‖2 ∈ R in (1.2), which simplifies to

‖G ‖2 − |G · ~ |‖~‖2 ≥ 0.

Rearranging, we can conclude (1.1) holds. Moreover, equality in (1.1) holds iff ‖G − _~‖ = 0 for
our choice of _, which happens iff G and ~ are parallel. �

Remark. Let G,~ ∈ R= be non-zero vectors. For = ≤ 3, we proved that

G · ~ = ‖G ‖‖~‖ cos\ .

Rearranging, we have

\ = arccos
(
G · ~
‖G ‖‖~‖

)
∈ [0, c] .

For any = ∈ N, Cauchy-Schwarz implies that

−1 ≤ G · ~
‖G ‖‖~‖ ≤ 1.

Thus, we can define

\ = arccos
(
G · ~
‖G ‖‖~‖

)
∈ [0, c],

to be the angle between G and ~ in all dimensions.

Example 4. For the pair of vectors G = (1, 5, 2, 3, 4), ~ = (3, 3, 1, 1, 0) ∈ R5, we have

G · G = 55, ~ · ~ = 20, G · ~ = 23.

Therefore, the angle between them is \ = arccos
(
2.3√
11

)
.
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Just like for the absolute value in R, the triangle inequality holds for the length of vectors in
R= as well.

Lemma 5. For any G,~ ∈ R=,
‖G + ~‖ ≤ ‖G ‖ + ‖~‖. (1.3)

Moreover, equality holds if and only if G = _~ or ~ = _G for some _ ≥ 0.

Proof. By expanding the dot product and using the Cauchy-Schwarz inequality

‖G + ~‖2 = ‖G ‖2 + 2G · ~ + ‖~‖2

≤ ‖G ‖2 + 2 |G · ~ | + ‖~‖2

≤ ‖G ‖2 + 2‖G ‖‖~‖ + ‖~‖2

= (‖G ‖ + ‖~‖)2 ,

which is precisely (1.3). Moreover, we have equality in (1.3) iff we have equality in Cauchy-
Schwarz and G · ~ = |G · ~ |, which happens iff G is parallel to ~ with _ ≥ 0. �

The Cross Product

For this section, we restrict our attention to the case = = 3.
Before stating the definition of the cross product of two vectors in R3, we recall that the

determinant of a 2 × 2 matrix is ����0 1

2 3

���� = 03 − 12,
and for a 3 × 3 matrix������01 02 03

11 12 13
21 22 23

������ = 01
����12 13
22 23

���� − 02 ����11 13
21 23

���� + 03 ����11 12
21 22

���� .
Definition 1.2. For any two vectors G = (G1, G2, G3), ~ = (~1, ~2, ~3) ∈ R3, we define thie cross
product to be

G × ~ :=

������ 8̂ 9̂ :̂

G1 G2 G3
~1 ~2 ~3

������ =
����G2 G3
~2 ~3

���� 8̂ − ����G1 G3
~1 ~3

���� 9̂ + ����G1 G2
~1 ~2

���� :̂ ∈ R3, (1.4)

where 8̂ = (1, 0, 0), 9̂ = (0, 1, 0) and :̂ = (0, 0, 1).

Example 6. If G = (2, 3, 4) and ~ = (1, 2, 3), then

G × ~ =

������8̂ 9̂ :̂

2 3 4
1 2 3

������ =
����3 4
2 3

���� 8̂ − ����2 4
1 3

���� 9̂ + ����2 3
1 2

���� :̂
= 8̂ − 2 9̂ + :̂
= (1,−2, 1).
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Remark.
8̂ × 8̂ = 0, 8̂ × 9̂ = :̂, 8̂ × :̂ = − 9̂ ,
9̂ × 8̂ = −:̂, 9̂ × 9̂ = 0, 9̂ × :̂ = 8̂,

:̂ × 8̂ = 9̂ , :̂ × 9̂ = −8̂, :̂ × :̂ = 0.

The cross product satisfies the right hand rule.

Properties of the Cross Product

Let G,~, I ∈ R3 and U, V ∈ R.

a) G × ~ = −~ × G

b) (UG + V~) × I = U (G × I) + V (~ × I).

c) (G × ~) · G = (G × ~) · ~ = 0, so G × ~ is orthogonal to the plane spanned by G and ~.

d) If \ denotes the angle between G and ~, then

‖G × ~‖ = ‖G ‖‖~‖ sin\,

which is equal to the area of the parallelogram generated by G and ~.

Proof. Properties a)-c) follow follow directly from the definition and are left as an Exercise. To
show d) we begin by expanding the term (G × ~) · (G × ~), and find that

‖G × ~‖2 = ‖G ‖2‖~‖2 − (G · ~)2

= ‖G ‖2‖~‖2(1 − cos2(\ ))
= ‖G ‖2‖~‖2 sin2(\ ) .

Note that the area is given by the base ‖G ‖ times the height ‖~‖ sin\ . �

Remark. In the case that G,~ ∈ R2, we see that

G × ~ =

������ 8̂ 9̂ :̂

G1 G2 0
~1 ~2 0

������ =
����G1 G2
~1 ~2

���� :̂, (1.5)

and so ‖G × ~‖ = G1~2 − G2~1.

Triple Product

For any G,~, I ∈ R3, we define their triple product as (G × ~) · I ∈ R.
Unravelling the definition, we see that

(G × ~) · I =

������ 8̂ 9̂ :̂

G1 G2 G3
~1 ~2 ~3

������ · ©«
I1
I2
I3

ª®¬ =

������I1 I2 I3
G1 G2 G3
~1 ~2 ~3

������ =
������G1 G2 G3
~1 ~2 ~3
I1 I2 I3

������ . (1.6)
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It follows from (1.6) that

(G × ~) · I = (~ × I) · G = (I × G) · ~ = −(~ × G) · I = −(I × ~) · G = −(G × I) · ~

The triple product has the following geometric interpretation.

Lemma 7. | (G × ~) · I | is the volume of the parallelepiped spanned by G,~ and I.

Proof. Let U denote the angle formed between the vector G × ~ and I.
Note that, after possibly replacing G × ~ with ~ × G , we may assume that U ∈ [0, c2 ].
Since (G × ~) · I = ‖G × ~‖‖I‖ cosU , and our parallelepiped has base area ‖G × ~‖ and height
‖I‖ cosU , the result follows. �

Remark. The triple product (G × ~) · I = 0 iff the volume of the parallelepiped vanishes iff
{G,~, I} are linearly dependent.

Example 8. Consider the parallelepiped spanned by the vectors (1, 1, 0), (0, 1, 0), (1, 1, 1) ∈ R3.
The triple product of these three vectors is������1 1 0

0 1 0
1 1 1

������ = 1,

and therefore the parallelepiped has unit volume.

Linear Dependence

In this subsection, we define what it means for a collection of vectors to be linearly independent.

Definition 1.3. Let E1, . . . , E: ∈ R= be a collection of vectors. We say that these vectors are
linearly dependent if there exists a non-zero vector U ∈ R: such that

U1E1 + U2E2 + · · · + U:E: = 0.

Otherwise, we say that the vectors are linearly independent.

Another way to state this definition is that for linearly independent E1, . . . , E: ∈ R=, the only
scalars U8 ∈ R such that

U1E1 + U2E2 + · · · + U:E: = 0,

are U8 = 0, for all 8 ∈ {1, . . . , :}.

Example 9. For two vectors E1, E2 ∈ R=, E1 and E2 are linearly dependent if

U1E1 = −U2E2,

for some non-zero U ∈ R2. Without loss of generality, we may assume that U1 ≠ 0, and so
dividing through by U1 we have

E1 =
−U2
U1

E2,

so E1 and E2 are parallel.
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Example 10. Consider the three vectors (0, 2, 1), (1,−4,−1), (1, 0, 1) ∈ R3. We note that

2 · (0, 2, 1) + (1,−4,−1) − (1, 0, 1) = 0,

and so these three vectors are linearly dependent. In particular, these three vectors all lie in the
same plane.

1.2 Affine Subspaces

We begin with the following standard definition of linear subspaces of R=.

Definition 1.4. A non-empty subset - ⊆ R= is a linear subspace if

_G + `~ ∈ -, ∀G,~ ∈ -, ∀_, ` ∈ R.

Example 11 (Examples in R3). The trivial subspace - = {0} and the entire space itself R3 are
the easiest examples of linear subspaces in R3.

The G-axis {(_, 0, 0) : _ ∈ R} is certainly a linear subspace. In fact, for any vector E ∈ R3, the
set

- := {_E : _ ∈ R},
is a linear subspace. It is a line if the vector E is non-zero.

Given a pair of vectors E1, E2 ∈ R3, we may consider the linear subspace given by all linear
combinations of them

- := {_1E1 + _2E2 : _1, _2 ∈ R}.
We note that - is a plane unless E1 and E2 are parallel. These describe every linear subspace of
R3.

More generally, for any linear subspace - ⊆ R= which is not just the trivial subspace {0}, there
is a collection of linearly independent vectors E1, . . . , E: ∈ R= for some 1 ≤ : ≤ =, such that

- =

{
:∑
9=1

_ 9E 9 : _ 9 ∈ R, ∀9 ∈ {1, . . . , :}
}
.

We say that - has dimension : , written dim(- ) = : .

Remark. If - ⊆ R= is a linear subspace, then it must contain the origin 0 ∈ - . We leave it as an
easy exercise for the reader to prove this.

Consider a straight line ! ⊆ R2 not passing through the origin. By the previous remark, we see
that ! cannot be a linear subspace, even though geometrically it looks identical to one. However,
if we translate ! by a fixed vector so that it does contain the origin, then ! will be a linear subspace.
This leads to the following definition

Definition 1.5. - ⊆ R= is called affine (or affine linear) if there exists some 0 ∈ R= such that

- + 0 := {G + 0 : G ∈ - },

is a linear subspace of R=.
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In this section, we find multiple ways of describing such subspaces. The easiest examples to
begin with are lines in the plane.

Example 12. Consider the line ! ⊆ R2 passing through the points (0, 2) and (1, 0). The usual
way of representing such a line is via the equation:

2G + ~ = 2.

We also have the following parametric form of !: given the two points on !, we can view the line
as the equation we get by starting at one of the points (e.g (1, 0)) and moving some amount C ∈ R
along the vector formed given by the difference of the second point with the first you are at (e.g
(0, 2) − (1, 0) = (−1, 2)). Indeed we may describe ! as the set of vectors

! = {(1, 0) + C (−1, 2) : C ∈ R}.

Note that we can easily recover the equation for the line from the parametric form by eliminating
the parameter C ,

G = 1 − C, ~ = 2C, ∀C ∈ R ⇐⇒ 1 − G =
~

2
⇐⇒ 2G + ~ = 2.

In the parametric form, it is also obvious that the line ! is affine,

! + (−1, 0) = {C · (−1, 2) : C ∈ R}.

Lines in R=

Let ! ⊆ R= be a line. Suppose � ∈ ! is a point on the line and E ∈ R= is the direction of !. That
is, E ∈ ! − −−→$�. Then the parametric form of the line is given by

! = {−−→$� + CE : C ∈ R},

where the real number C ∈ R is called a parameter.

Example 13. Suppose ! ⊆ R3 is the line passing through the points � = (1, 2, 3) and � =

(−1, 3, 5).
In this case, we may take

E =
−→
�� = (−1, 3, 5) − (1, 2, 3) = (−2, 1, 2),

so that the parametric form of the line is

! = {(1, 2, 3) + C · (−2, 1, 2) : C ∈ R}.

To find the equation for the line !, we solve for C :

1 − G
2

=
~ − 2
1

=
I − 3
2
(= C) .

12



Remark. The parametric form of a line is not unique.

• Choosing a different initial point on the line corresponds to translating the value of C by a
fixed amount:
In the previous example, we have chosen � = (−1, 3, 5), giving the parametric form of the
line

! = {(−1, 3, 5) + B · (−2, 1, 2) : B ∈ R}.
This is the same as the original parameterisation by setting C = B − 1.

• Choosing a stretched version of our direction vector corresponds to sclaing the value of C
by a fixed amount:
In the previous example, we have chosen E = (4,−2,−4), giving the parametric form of the
line

! = {(1, 2, 3) + B · (4,−2,−4) : B ∈ R}.
This is the same as the original parameterisation by setting C = −2B.

Planes in R3

A plane % ⊆ R3 is determined by

(i) Three non-colinear points on % ;

(ii) A point on % , and two linearly independent directions in % ;

(iii) A point on % and a normal vector to % .

Here, E is a direction in % if E ∈ % − −−→$� for any point � ∈ % , and = is a normal vector to % if
= ⊥ E for any direction E in % .

For case ii), if � ∈ % and D, E ∈ R3 be linearly independent directions in % , then we have the
following parametric form of the plane

% = {−−→$� + CD + BE : C, B ∈ R}.

For case iii), if � = (01, 02, 03) ∈ % and = = (=1, =2, =3) is a normal vector to % , then for any
G ∈ R3 we see that

G ∈ % ⇐⇒ G − −−→$� ⊥ = ⇐⇒ (G − −−→$�) · = = 0 ⇐⇒ G · = =
−−→
$� · =,

and hence the equation of the plane is

=1G1 + =2G2 + =3G3 = 01=1 + 02=2 + 03=3︸                 ︷︷                 ︸
∈R

,

where the right hand side is just a constant.
In particular, for any non-zero vector (0, 1, 2) ∈ R3, the set of points (G,~, I) ∈ R3 solving the

equation
0G + 1~ + 2I = 3, (3 ∈ R),

is a plane with normal vector (0, 1, 2). We note that if (0, 1, 2) = 0 ∈ R3, then this equation
describes either all of R3 when 3 = 0, or the empty set when 3 ≠ 0.
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Example 14. Let % be the plane passing through the points � = (0, 0, 1), � = (0, 2, 0), and
� = (−1, 1, 0). To find a parametric form of % , we note that the vectors

−→
�� = (0, 2,−1), −→�� = (−1, 1,−1),

are directions in % , and therefore

% = {(0, 0, 1) + B (0, 2,−1) + C (−1, 1,−1) : B, C ∈ R}.

Next we note that the vector

−→
�� × −→�� =

������ 8̂ 9̂ :̂

0 2 −1
−1 1 −1

������ = (−1, 1, 2),
is a normal vector to % , and so the equation of the plane is given by

−G + ~ + 2I = (−1, 1, 2) · (G,~, I) = (−1, 1, 2) · (0, 0, 1) = 2.

For two subsets A,B ⊆ R=, we define the distance between these subsets to be the infimum of
the distance between pairs of points in these sets

inf
�∈A,�∈B

‖−→��‖ .

The following example shows how to calculate the distance between a point and a plane.

Example 15. Let � = (2, 1, 1) and % be the plane given by the equation

− G + 2~ − I = −4, (1.7)

so that % has normal vector = = (−1, 2 − 1). Consider the line

! := {� + C= = (2 − C, 1 + 2C, 1 − C) : C ∈ R},

and let � = ! ∩ % be the intersection point of this line and the plane.
Fact: � is the point on % closest to � (see Homework 2).
To find �, substitute our formula for a point on ! into (1.7)

(−1) (2 − C) + 2(1 + 2C) − (1 − C) = −4 ⇐⇒ C = −1
2
,

and hence � = ( 52 , 0,
3
2 ). Therefore, the distance between � and % is

‖−→��‖ = ‖(1/2,−1, 1/2)‖ =
√
6/2.

Exercise: Find the distance between the lines

!1 = {(−4, 9,−4) + B (4,−3, 0) : B ∈ R},
!2 = {(5, 2, 10) + C (4, 3, 2) : C ∈ R}.

Hint: Find � ∈ !1, � ∈ !2 such that
−→
�� ⊥ !1, !2.

Note that lines in R3 may be viewed as the intersection of two planes:
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Example 16. Consider the line

G + ~ + 6I = 6, G − ~ − 2I = −2.

Then, performing Gaussian elimination of this system of equations, we find a general solution is

G = 2 − 2C, ~ = 4 − 4C, I = C, C ∈ R,

which is a parametric form of the line. Conversely, we can eliminate the parameter C from the
parametric form to find

2G − ~ = 0, ~ + 4I = 4,

which is another set of equations defining the same line.

Example 17. Given three non-trivial planes in R3, what is the intersection of those planes?

Case 1: A single unique point. Note that in this case, the normal vectors to the three planes are
linearly independent.

Case 2: A line or a plane. Note that in this case, the normal vectors to the three planes are linearly
dependent.

Case 3: The empty set. Similar to the previous case, the normal vectors to the three planes are
linearly dependent.

General Affine Subspaces

Given a non-zero vector = ∈ R=, the solutions G ∈ R= to the equation

= · G = _, (_ ∈ R)

describes a hyperplane (a dimension = − 1 affine subspace) with normal vector =.
To describe a dimension : plane % in R=, we can either describe it using its

• Parametric form:

% = {@ +
:∑
9=1

C 9E 9 : C1, . . . , C: ∈ R},

where @ ∈ % , E1, . . . , E: are linearly independent vectors in the direction of % , and C1, . . . , C: ∈
R are parameters.

• Equations:
=∑
9=1

08 9G 9 = 28 , ∀8 ∈ {1, . . . , = − :},

where 2 = (21, . . . , 2=−: ) ∈ R=−: , � = (08 9 ) is a (= − :) × = matrix with full rank (trivial
kernel).

Note that a system of (=−:) equations is equivalent to the intersection of (=−:) hyperplanes.
In this language, the condition of the matrix � is equivalent to the normal vectors to the
(= − :) hyperplanes being linearly independent.
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Exercise: Show that in the parametric form of % , we may choose the direction vectors E1, . . . , E:
to be orthonormal, i.e.

E8 · E 9 =
{
1 : 8 = 9

0 : 8 ≠ 9
, ∀8, 9 ∈ {1, . . . , :}.

Hint: If you are struggling, look up the Gram-Schmidt algorithm and apply it here.

1.3 Curves

Definition 1.6. Let � ⊆ R be an interval. A curve in R= is a continuous function G : � → R=.
That is,

G (C) = (G1(C), G2(C), . . . , G= (C)), ∀C ∈ � ,

where every component function G8 : � → R, for 8 ∈ {1, . . . , =}, is continuous.

Example 18. G : [−1, 1) → R2, G (C) = (C, C2). This traces a section of the parabola ~ = G2

starting at the point (−1, 1) and moving in the positive G direction up to (but not including) the
point (1, 1).

Example 19. G : R→ R3, G (C) = ? + C@ for some ?, @ ∈ R3 (@ ≠ 0). This is a parameterisation
of a straight line as we saw earlier.

In the following definition, we restrict our attention to curves whose domain is a closed interval
� = [0, 1] ⊆ R.

Definition 1.7. A curve G : [0, 1] → R= is said to be

(a) closed if G (0) = G (1).

(b) simple if G (C1) ≠ G (C2) for any 0 ≤ C1 < C2 ≤ 1, except for possibly C1 = 0,C2 = 1.

Theorem 20. Let G (C) = (G1(C), . . . , G= (C)) be a curve in R=. Then

• lim
C→0

G (C) =
(
lim
C→0

G1(C), . . . , lim
C→0

G= (C)
)
.

• G ′(C) = lim
ℎ→0

G (C+ℎ)−G (C )
ℎ

= (G ′1(C), . . . , G ′= (C)), provided the limit exists.

Remark. G ′(0) is the tangent vector of G at C = 0. If a curve G : � → R= has a well defined
tangent vector at every point C ∈ � , then we say the curve is differentiable. If moreover, the map
G ′ : � → R= is continuous (so the derivative is itself a curve), then we say that the original curve
is a �1-curve.

Example 21. The curve G : R → R2, G (C) = (C, |C |) is not differentiable as it has no tangent
vector at C = 0.

Example 22. The curve G : R → R2, G (C) = (C2 sin C−1, 0) for C ≠ 0, and G (0) = (0, 0) is a
differentiable curve, but is not a �1-curve.
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We have the following physical interpretation for derivatives of curves:
Suppose G (C) denotes the displacement of a particle at time C . Then G ′(C) will denote the

particles velocity, ‖G ′(C)‖ its speed, and G ′′(C) its acceleration at time C .

Example 23. Suppose G (C) = (cos C, sin C) for C ∈ [0, 2c]. Then

G ′(C) = (− sin C, cos C) ⊥ G (C), ∀C ∈ [0, 2c],
G ′′(C) = (− cos C,− sin C) = −G (C), ∀C ∈ [0, 2c],

and ‖G ′(C)‖ ≡ 1.

Example 24. G : [1,∞) → R2, G (C) = (C−1, C−2). Then limC→∞ G (C) = (0, 0).

Properties for Derivatives of Curves

Let G,~ : � → R= be differentiable curves, _ ∈ R, and 5 : � → R a differentiable function.

a) (G + ~) ′(C) = G ′(C) + ~ ′(C);

b) (_G) ′(C) = _ · G ′(C);

c) (5 · G) ′(C) = 5 ′(C)G (C) + 5 (C)G ′(C);

d) (G · ~) ′(C) = G ′(C) · ~ (C) + G (C) · ~ ′(C);

e) If = = 3, (G × ~) ′(C) = G ′(C) × ~ (C) + G (C) × ~ ′(C).

Arclength of a Curve

Suppose G : � → R= is a �1-curve.

Definition 1.8. The arclength of the curve G (C) for 0 ≤ C ≤ 1 is

( :=
1∫

0

‖G ′(C)‖3C .

Referring back to the physical interpretation of a curve and its derivatives, we are saying that
the integral of the speed between two times is equal to the distance travelled.

Alternatively, we could view the arc-length as a limit of the following approximations:
Take 0 = C0 < C1 < . . . < C= = 1 for some subdivision of the interval [0, 1]. Then consider the

following sequence of line segments which approximate our curve

−−−−−−−−→
G (C0)G (C1),

−−−−−−−−→
G (C1)G (C2), . . . ,

−−−−−−−−−−−→
G (C=−1)G (C=) .

The arclength of the curve ( is then approximated by the sum of the length of these line
segments

( ≈
=∑
9=1
‖
−−−−−−−−−−→
G (C 9−1)G (C 9 )‖ =

=∑
9=1
‖G (C 9 ) − G (C 9−1)‖.
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Since G is differentiable, we also have the approximation

G ′(C 9 ) = lim
ℎ→0

G (C 9 ) − G (C 9 + ℎ)
ℎ

≈
G (C 9 ) − G (C 9−1)

C 9 − C 9−1
,

and therefore

( ≈
=∑
9=1
‖G ′(C 9 )‖(C 9 − C 9−1) .

Taking finer and finer approximations, the sum converges to an integral against 3C and we recover
the desired formula.

Example 25. Consider the helix parameterised by G (C) = (cos C, sin C, C), for C ∈ [0, 2c].

Its tangent vector at each C is G ′(C) = (− sin C, cos C, 1), and so the tangent line of G when C = c
has parameterisation

G (c) + B · G ′(c) = (−1, 0, c) + B · (0,−1, 1), ∀B ∈ R.

Moreover, the speed of the curve is constant

‖G ′(C)‖ =
√
sin2 C + cos2 C + 1 =

√
2.

Thus, the arclength of the helix is

( =

2c∫
0

√
2 3C = 2

√
2c.

Example 26. Consider the following two curves G : [0, 4] → R2, G (C) = (C, C) and ~ : [0, 2] →
R2, ~ (C) = (C2, C2). We note that these two curves are two different parameterisations of the line
segment joining the origin to the point (2, 2) with their speeds always positive away from the end
points. They should therefore give the same arc length value. Indeed

4∫
0

‖G ′(C)‖ 3C =
4∫

0

‖(1, 1)‖ 3C =
4∫

0

√
2 3C = 4

√
2,

2∫
0

‖~ ′(C)‖ 3C =
2∫

0

‖(2C, 2C)‖ 3C =
2∫

0

2
√
2C 3C = 4

√
2.

Definition 1.9. A �1-curve G : (0, 1) → R= is called regular if

‖G ′(C)‖ > 0, ∀C ∈ (0, 1).

Exercise: Prove that the following independence of parameterisation for the arc length:
If G : (0, 1) → R=, ~ : (2, 3) → R= are two regular �1-curves with the same image

{G (C) ∈ R= : C ∈ (0, 1)} = {~ (B) ∈ R= : B ∈ (2, 3)},

show that the arc length of G is equal to the arc length of ~.
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Polar Coordinates

Given a point % = (G,~) ∈ R2, we can represent it by the pair of values{
A =

√
G2 + ~2 = the distance from the origin,

\ = the anticlockwise angle between the x-axis and
−→
$%.

Example 27. The point % = (1, 1) has A =
√
2 and \ = c

4 + 2c:, for : ∈ Z.

We note that for the origin, A = 0, and \ is not uniquely defined.

Remark. There are different conventions for the ranges of A and \ . In this course we choose
the convention A ∈ [0,∞) and \ ∈ [0, 2c), so that (A, \ ) are uniquely determined away from the
origin. Although we make this convention, it is sometimes useful to allow A < 0 as we shall see
later.

Given polar coordinates (A, \ ) it is easy to read off the Cartesian coordinates directly

G = A cos\, ~ = A sin\ .

Conversely, to read off the polar coordinates from the Cartesian coordinates, we have to be careful
on the signs of G and ~ when determining \ . For example, when G,~ > 0, then

A =
√
G2 + ~2, \ = arctan

(~
G

)
.

However, when G,~ < 0, then we choose \ = c
2 + arctan(

~

G
) instead, so that \ always lies in the

region [0, 2c).

Curves in Polar Coordinates

We explore some examples of curves in the plane represented using polar coordinates.

Example 28. The equation A = A0 determines a circle of radius A0 > 0 centred at the origin.

Example 29. The equation \ = \0 determines the half ray starting from (and including) the origin
which makes an angle of \0 with the positive G-axis in the anticlockwise direction.

Example 30. The Archimedes spiral A = :\ for any constant : > 0.

Example 31. The equation A = 4 cos\ determines a circle centred at (2, 0) of radius 2. To see this
we can change back to Cartesian coordinates. We first note that the origin satisfies this equation,
so when multiplying by A we do not change the equation.

A = 4 cos\ ⇐⇒ A 2 = 4A cos\ ⇐⇒ G2 + ~2 = 4G ⇐⇒ (G − 2)2 + ~2 = 2.

We note that under our convention that A ≥ 0, we must restrict \ ∈ [0, c2 ] ∩ [
3c
2 , 2c).
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Example 32. The equation A cos(\ − c
4 ) =

√
2 determines a straight line passing through (0,−2)

and (2, 0). To see why we again change back to Cartesian coordinates. Expanding the right hand
side using the double angle formula gives

2 =
√
2A

(
cos\ cos

c

4
+ sin\ sin c

4

)
= A cos\ + A sin\ = G + ~.

Recall that our convention is A ≥ 0, however in some instances, allowing A < 0 can be
convenient. In particular, for A < 0,

(G,~) = (A cos(\ ), A sin(\ ))
= (− |A | cos(\ ),− |A | sin(\ ))
= ( |A | cos(\ + c), |A | sin(\ + c)) .

Example 33. With this convention, the curve {\ = \0} is now an entire straight line.

Example 34. Consider the curve A = 1 − _ cos\ for some _ > 1.

Case 1: We begin with the convention A ≥ 0.

1 − _ cos\ ≥ 0 =⇒ cos\ ≤ _−1 < 1 =⇒ \ ∈ [X, 2c − X],

for X := arccos(_−1). Sketching this curve gives a simple cardioid curve.

Case 2: If we allow A ∈ R instead, then we have an extra loop for the region \ ∈ [−X, X]. In
particular, the curve is now self-intersecting.

Coordinates in R3

One way to incorporate polar coordinates in higher dimensions is to use them within a plane, and
leave the final Cartesian coordinate as it is. These are known as cylindrical coordinates.

To express a point % = (G,~, I) ∈ R3 in cylindrical coordinates, we convert the (G,~) part of %
into polar coordinates. That is, we choose (A, \, I) given by the relation

G = A cos\, ~ = A sin\, I = I.

Example 35. The helix can be easily parameterised in cylindrical coordinates:

A = 1, \ = C, I = C, ∀C ∈ [0, 2c) .

We also have a higher dimensional version of polar coordinates known as spherical coordinates.
That is, we describe a point % = (G,~, I) ∈ R3 by:

d =
√
G2 + ~2 + I2 = the distance from the origin,

\ = the anticlockwise angle between the x-axis and (G,~, 0),
i = the angle between the positive z-axis and (G,~, I) .
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We note that i ∈ [0, c]. To read off the spherical coordinates from the cartesian coordinates,
we decompose % = (G,~, 0) + (0, 0, I), and note that I = d cosi , and (G,~, 0) has length d sini .
Therefore, we find that

G = d sini cos\, ~ = d sini sin\, I = d cosi.

Example 36. The subset d = 2 corresponds to the sphere centred at the origin of radius 2.

Example 37. The subset i = c
4 corresponds to the cone with cone angle c

4 , its tip at the origin,
lying within the upper half space {I > 0}.

Example 38. The subset \ = 0 corresponds to the half plane {G > 0, ~ = 0}.
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Week 2

2.1 Topological Terminology

Definition 2.10. Given a point G0 ∈ R= and a fixed constant A > 0, we define the open ball
centred at G0 of radius A to be

�A (G0) := {G ∈ R= : ‖G − G0‖ < A } .

Similarly, we define the closed ball centred at G0 of radius A to be

�A (G0) := {G ∈ R= : ‖G − G0‖ ≤ A } .

Definition 2.11. Let ( ⊆ R= be any subset.

• The interior of ( is the set

Int(() := {G ∈ R= : �A (G) ⊆ (, for some A > 0} .

Points in Int(() are called interior points of ( .

• The exterior of ( is the set

Ext(() := {G ∈ R= : �A (G) ⊆ R= \ (, for some A > 0} .

Points in Ext(() are called exterior points of ( .

• The exterior of ( is the set

m( := {G ∈ R= : �A (G) ∩ ( ≠ ∅ and �A (G) ∩ (R= \ () ≠ ∅, ∀A > 0} .

Points in m( are called boundary points of ( .

Example 39. Consider the annulus ( =
{
(A, \ ) ∈ R2 : 1 < A ≤ 4

}
, where (A, \ ) denotes polar

coordinates.
Let � be a point lying on the inner circle A = 1, � be a point lying inside the annulus with

A ∈ (1, 4), � be a point on the outer circle A = 4, and � a point with A > 4.
We note that �, � ∉ ( , �,� ∈ ( , and that

• � ∈ m( is a boundary point of (;

• � ∈ Int(() is an interior point of (;

• � ∈ m( is a boundary point of (;
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• � ∈ Ext(() is an exterior point of ( .

Let ( ⊆ R=. The following properties follow directly from the definition:

1. R= is the disjoint union of Int((), Ext(() and m(;

2. Int(() ⊆ ( and Ext(() ⊆ R= \ ( . A point in m( may or may not be in ( .

Definition 2.12. A subset ( ⊆ R= is called

1. open if ∀G ∈ ( , ∃Y > 0 such that �Y (G) ⊆ ( .

2. closed if R= \ ( is open.

Equivalently, ( is open if ( = Int((), and ( is closed if ( = Int(() ∪ m( .

Remark. There are precisely two subsets of R= which are both open and closed: R= and ∅. Some
subsets of R= are neither open nor closed, e.g the annulus {1 < A ≤ 4} from before.

Note that, for any ( ⊆ R=, then it is always true that Int(() and Ext(() are both open, and
hence m( is closed.

Bounded and Path Connected Subsets

Definition 2.13. ( ⊆ R= is bounded if ∃" > 0 such that

( ⊆ �" (0) = {G ∈ R= : ‖G ‖ < "}.

( is unbounded if ( is not bounded.

Definition 2.14. ( is path connected if any two points in ( can be connected by a curve in ( , i.e
∀G,~ ∈ ( , there exists a curve W : [0, 1] → ( with W (0) = G and W (1) = ~.

Remark. There is also a notion of connectedness which is slightly more subtle that we shall not
discuss in these notes. It is a fact that if ( is path connected, then ( is connected, however the
converse is does not hold: there exists sets ( which are connected but not path connected.

Theorem 40 (Jordan curve theorem). A simple closed curve in R2 divides R2 into two path
connected components, one bounded and one unbounded.

Remark. Although this seems trivial, the result is surprisingly hard to prove. In fact, an
analogous statement in higher dimensions which was believed to be true for many years is
actually false. (For the interested reader, you may look up the Jordan–Schönflies theorem and the
Alexander horned sphere.)
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2.2 Vector-Valued Multivariable Functions

We now consider functions 5 : Ω ⊆ R= → R<. One way to visualise such a function is by
looking at the graph of 5 :

Graph(5 ) = {(G, 5 (G)) ∈ R=+< : G ∈ Ω}.

Alternatively, we may consider the level sets of 5 : for any 2 ∈ R<, we define the level set at 2
to be

!2 := 5 −1(2) = {G ∈ Ω : 5 (G) = 2} ⊆ Ω ⊆ R= .

Example 41. For the function 5 : R2 → R, 5 (G,~) = G + ~, and for any 2 ∈ R, we have that the
level set !2 is the line given by the equation ~ = 2 − G .

Example 42. For the function 6 : R2 → R, 6(G,~) = G2 + ~2, and for any 2 ∈ R, we have that

!2 =


∅ : 2 < 0
(0, 0) : 2 = 0
the circle m�√2 (0) : 2 > 0.

Example 43. For the function ℎ : R2 → R, ℎ(G,~) = cos(2c (G2 + ~2)), the level set !1 is given
by those points (G,~) such that G2 + ~2 is an integer. Therefore

!1 = {0} ∪
⋃
:≥1

m�√
:
(0) .

Limits of Multivariable Functions

Let � ⊆ R=. We define � = � ∪ m�, known as the closure of �. Since � ⊆ Int(�) ∪ m�, we see
that

� = Int(�) ∪ m� = R= \ Ext(�),

and hence � is closed.
Fact: � is the smallest closed set containing � (See Homework 3).
For any point 0 ∈ � and any function 5 : �→ R<, we now define a notion of a limit of 5 (G)

as G → 0.

Definition 2.15. For 5 : � ⊆ R= → R<, 0 ∈ � and ! ∈ R<, we say that limG→0 5 (G) = ! if,
∀n > 0, ∃X > 0 such that,

G ∈ � with 0 < ‖G − 0‖ < X =⇒ ‖ 5 (G) − !‖ < n.

Remark. This is the same definition of a limit as in the 1-dimensional case, only with the absolute
value |·| being replaced by the length of vectors ‖·‖. Here, you should read the quantity ‖G − ~‖
as the distance between G and ~.

The fact that we require ‖G − 0‖ > 0 means we do not care about the value of 5 (0) if it exists.
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Example 44. Take 5 (G,~) = G + ~. We will prove using the definition that

lim
(G,~)→(2,1)

5 (G,~) = 3.

That is, we must show that for any n > 0, we can find a X > 0 (which may depend on n) such
that, if

0 < ‖(G,~) − (2, 1)‖ < X,

then
|5 (G,~) − 3| = |G + ~ − 3| < n.

We first notice that the quantity we want to control can be bound above using the triangle
inequality:

|G + ~ − 3| ≤ |G − 2| + |~ − 1| . (2.8)

Moreover, we have that each of these terms is controlled by the distance between (G,~) and (2, 1):

|G − 2| , |~ − 1| ≤
√
(G − 2)2 + (~ − 1)2 = ‖(G,~) − (2, 1)‖. (2.9)

Therefore, if we picked n = 1 for example, then choosing X = 1/2 we see that

0 < ‖(G,~) − (2, 1)‖ < 1/2

implies by (2.9) that

|G − 2| , |~ − 1| < 1/2 =⇒ |G − 2| + |~ − 1| < 1,

which by (2.8) that
|G + ~ − 3| < 1,

as required.
More generally, if we fix n > 0 to be an arbitrary positive number, we then choose X = n/2 > 0.

It then follows from (2.8) and (2.9) that if 0 < ‖(G,~) − (2, 1)‖ < X , then |G + ~ − 3| < n. Since
the initial n > 0 chosen was arbitrarily, we have shown it to be true for any n > 0.

Example 45. Take 5 (G,~) = G2 + ~2. We will prove using the definition that

lim
(G,~)→(0,0)

5 (G,~) = 0.

Fix n > 0 and choose X =
√
n > 0. If 0 < ‖(G,~) − (0, 0)‖ = ‖(G,~)‖ < X , we have

|5 (G,~) − 0| =
��G2 + ~2�� = ‖(G,~)‖2 < X2 = n.
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Component Functions

Let � ⊆ R=, 0 ∈ �, 5 : �→ R<. We can decompose the vector 5 (G) at every point G ∈ �:

5 (G) =
©«
51(G)
52(G)
...

5< (G)

ª®®®®¬
,

where each 58 : �→ R for 8 = 1, . . . ,< is called a component of 5 .

Lemma 46. Let 5 : �→ R<, 0 ∈ � and ! ∈ R<. Then

lim
G→0

5 (G) = ! = (ℓ1, . . . , ℓ<) ∈ R< ⇐⇒ lim
G→0

59 (G) = ℓ9 , ∀9 = 1, . . . ,<.

As a consequence of this lemma, it is enough to focus on limits of R-valued functions (< = 1).

Proof. We begin with the ( =⇒ ) direction. Fix n > 0. By the definition of limG→0 5 (G) = !,
there exists X > 0 such that G ∈ � with 0 < ‖G − 0‖ < X implies that

��59 (G) − ℓ9 �� ≤
√√√

:∑
8=1
(58 (G) − ℓ8)2 = ‖ 5 (G) − !‖ < n,

for each 9 = 1, . . . ,<. This is precisely what we wanted to show.
For the reverse direction (⇐= ), we again fix n > 0. Consider the new value ñ = n√

<
> 0. For

each 9 , plugging this value of ñ into the definition of limG→0 59 (G) = ℓ9 , we have that there exists
X 9 > 0 such that, if G ∈ � and if 0 < ‖G − 0‖ < X 9 , then

��59 (G) − ℓ9 �� < ñ.
We now set X := min{X1, . . . , X<} > 0. Then, if G ∈ � and if 0 < ‖G − 0‖ < X , we have that

‖ 5 (G) − !‖ =

√√√
:∑
9=1

��59 (G) − ℓ9 ��2 ≤ √√√
:∑
9=1

ñ2 =
√
<ñ = n.

This is precisely the definition of limG→0 5 (G) = !.
�

Paths in the Domain

When the domain is a single variable, the ways we may approach at point 0 ∈ R are limited. In
particular, there are only two directions to consider; from above and from below. Therefore

lim
G→0

5 (G) exists ⇐⇒ lim
G↑0

5 (G) = lim
G↓0

5 (G)︸                   ︷︷                   ︸
(they exists and are equal)

.

When our domain is in R= for = ≥ 2, there are now infinitely many ways to approach a point
0 ∈ R=. When defining a limit, we need to consider every possible curve along which we can
approach 0. In particular, limG→0 5 (G) = ! if and only if, the limit of 5 (G) when G approaches 0
along any path exists and equals !.

Therefore, in order to show that such a limit does not exist, we can either:
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• Find a path along which the limit does not exists;

• Find two paths such that the limit along these paths is different.

In both cases, we may conclude that the limit does not exist (DNE).

Example 47. Consider the function 5 : R2 \ {0} → R, 5 (G,~) = G2−~2
G2+~2 . In order to investigate

the limit of 5 at the origin, we look at the limits of 5 along different paths to the origin.

(i) Along the G-axis, we have

lim
(G,0)→(0,0)

G2 − 0
G2 + 0 = lim

G→0
1 = 1.

(ii) Along the ~-axis, we have

lim
(0,~)→(0,0)

0 − ~2
0 + ~2 = lim

~→0
−1 = −1.

Since 1 ≠ −1, we conclude that the limit lim(G,~)→(0,0) 5 (G,~) DNE.

Example 48. Consider the function 6 : R2 \ {(1, 2)} → R, 6(G,~) = G~−2G−~+2
(G−1)2+(~−2)2 . To investigate

the limit of 6 at (1, 2), we approach (1, 2) along the line with slope< ∈ R. i.e along

~ = 2 +<(G − 1) .

We first note that

6(G,~) = G~ − 2G − ~ + 2
(G − 1)2 + (~ − 2)2 =

(G − 1) (~ − 2)
(G − 1)2 + (~ − 2)2 ,

and so

6(G,<(G − 1) + 2) = <(G − 1)2
(G − 1)2 +<2(G − 1)2 .

Therefore, taking a limit along this line gives

lim
(G,< (G−1)+2)→(1,2)

6(G,<(G − 1) + 2) = lim
G→1

<(G − 1)2
(G − 1)2 +<2(G − 1)2

= lim
G→1

<

1 +<2 =
<

1 +<2 .

Since this value is different for different choices of< ∈ R, the limit lim(G,~)→(1,2) 6(G,~) DNE.

Example 49. 5 : R2 → R, defined by

5 (G,~) =
{
1 : 0 < ~ < G2

0 : else.

Investigate the limit of 5 at the points

0 = (0, 1), 1 = (1, 1), 2 = (0, 0) .
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• Near the point 0, 5 ≡ 0, and so

lim
(G,~)→0

5 (G,~) = 0.

• We note that

5 (G, 1) =
{
1 : G > 1
0 : G ≤ 1.

Therefore,
lim
G↓1

5 (G, 1) = 0, lim
G↑1

5 (G, 1) = 1,

and since these are different the limit of 5 at 1 DNE.

• Along any line ~ =<G with< > 0 we have that

5 (G,<G) =
{
1 : G > <

0 : G ≤ <.

Therefore, lim(G,<G)→(0,0) 5 (G,<G) = 0, for all < > 0. A similar calculation shows the
same for< ≤ 0.

However, this does not mean that the limit at 2 exists and is zero. To see why, consider
instead the curve ~ = 1

2G
2. At every point on this curve (except the origin) 5 ≡ 1. Therefore,

lim
(G, G22 )→(0,0)

5 (G, G
2

2
) = 1 ≠ 0,

and so the limit of 5 at 2 DNE.

Properties of Limits

Lemma 50. For each of the following equations, if the limits on the right hand side (RHS) exist,
then the limit on the left hand side (LHS) exists, and the equation holds.

(i)
lim
G→0

5 (G) + 6(G) = lim
G→0

5 (G) + lim
G→0

6(G) .

(ii)
lim
G→0

_5 (G) = _ lim
G→0

5 (G), (for _ ∈ R).

(iii)
lim
G→0

5 (G)6(G) = lim
G→0

5 (G) · lim
G→0

6(G) .

(iv)

lim
G→0

5 (G)
6(G) =

limG→0 5 (G)
limG→0 6(G)

, if lim
G→0

6(G) ≠ 0.
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(v)
lim
G→0
(5 (G))= =

(
lim
G→0

5 (G)
)=
, ∀= ∈ N0.

(vi)

lim
G→0
(5 (G)) 1= =

(
lim
G→0

5 (G)
) 1
=

, if = is even and 5 (G) ≥ 0 near a.

Theorem 51 (Squeeze theorem). Let 5 , 6, ℎ : Ω ⊆ R= → R. If

6(G) ≤ 5 (G) ≤ ℎ(G),

for G ∈ Ω near 0 ∈ Ω, and
lim
G→0

6(G) = lim
G→0

ℎ(G) = !,

for some ! ∈ R, then limG→0 5 (G) = !.

Remark. We say that a statement % (G) is true for G ∈ Ω near 0 ∈ Ω if: ∃X > 0 such that, if
G ∈ Ω with G ∈ �X (0) \ {0}, then % (G) is true.

Proof of the Squeeze theorem. Fix n > 0. Then there exists X1 > 0 such that

0 < ‖G − 0‖ < X1, G ∈ Ω =⇒ ℎ(G) − ! < n.

Similarly, there exists X2 > 0 such that

0 < ‖G − 0‖ < X2, G ∈ Ω =⇒ ! − 6(G) < n.

Let X3 > 0 be sufficiently small so that

0 < ‖G − 0‖ < X3, G ∈ Ω =⇒ 6(G) ≤ 5 (G) ≤ ℎ(G) .

Setting X = min{X1, X2, X3} > 0, we see that, if 0 < ‖G − 0‖ < X and G ∈ Ω, then{
5 (G) − ! ≤ ℎ(G) − ! < n,

! − 5 (G) ≤ ! − 6(G) < n,
=⇒ |5 (G) − ! | < n. �

We have the following Corollary to the Squeeze theorem

Corollary 1. Let 5 , 6 : Ω ⊆ R= → R. If

|5 (G) | ≤ 6(G),

for G ∈ Ω near 0 ∈ Ω, and limG→0 6(G) = 0, then limG→0 5 (G) = 0.

Example 52. Consider the function 5 (G,~) = G cos
(

1
G2+~2

)
. Since

|5 (G,~) | = |G |
����cos (

1
G2 + ~2

)����︸            ︷︷            ︸
≤1

≤ |G | ,

and lim(G,~)→(0,0) |G | = 0, by the Squeeze theorem, lim(G,~)→(0,0) 5 (G,~) = 0.
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Example 53. Consider the function 6(G,~) = (G−1)
2 logG

(G−1)2+~2 . Since

|6(G,~) | = |logG |
���� (G − 1)2(G − 1)2 + ~2

����︸            ︷︷            ︸
≤1

≤ |logG | ,

and lim(G,~)→(1,0) |logG | = |log 1| = 0, by the Squeeze theorem, lim(G,~)→(1,0) 6(G,~) = 0.

Finding Limits in Polar Coordinates

Note that in polar coordinates, (G,~) → (0, 0) is equivalent to A ↓ 0.

Example 54.

lim
(G,~)→(0,0)

G3 + ~3
G2 + ~2 = lim

A ↓0

A 3(sin3 \ + cos3 \ )
A 2

= lim
A ↓0

A (sin3 \ + cos3 \ ) = 0,

where the final equality comes from the bound��sin3 \ + cos3 \ �� ≤ ��sin3 \ �� + ��cos3 \ �� ≤ 2,

and the Squeeze theorem.

Example 55.

lim
(G,~)→(0,0)

G2 + G~
2(G2 + ~2) = lim

A ↓0

A 2 cos2 \ + A 2 cos\ sin\
2A 2

== lim
A ↓0

cos2 \ + cos\ sin\
2

,

which depends on \ . Therefore, the limit DNE.

Example 56.
lim

(G,~)→(0,0)
G~ log(G2 + ~2) = lim

A ↓0
2A 2 cos\ sin\ log A .

Since
��2A 2 cos\ sin\ log A �� ≤ ��2A 2 log A ��, and

lim
A ↓0

2A 2 log A = lim
A ↓0

2 log A
A−2

(= −∞∞ )

= lim
A ↓0

2A−1

−2A−3

= lim
A ↓0
−A 2 = 0,

where in the second equality, we have use L’Hôpital’s rule. Applying the Squeeze theorem, we
conclde the limit is zero.
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Iterated Limits

Question: when are the following limits equal?

lim
G→0

(
lim
~→0

5 (G,~)
)
, lim

~→0

(
lim
G→0

5 (G,~)
)
, lim
(G,~)→(0,0)

5 (G,~).

Example 57. If 5 (G,~) = G+~
G−~ , then

lim
G→0

(
lim
~→0

5 (G,~)
)
= lim
G→0

G

G
= 1;

lim
~→0

(
lim
G→0

5 (G,~)
)
= lim
~→0

~

−~ = −1;

lim
(G,~)→(0,0)

5 (G,~) DNE.

Example 58. If

5 (G,~) =
{
1 : G = ~,

0 : G ≠ ~,

then we have that

lim
G→0

(
lim
~→0

5 (G,~)
)
= 0;

lim
~→0

(
lim
G→0

5 (G,~)
)
= 0;

lim
(G,~)→(0,0)

5 (G,~) DNE.

In particular, this example shows that just because the iterated limits exist and are equal:

lim
G→0

(
lim
~→0

5 (G,~)
)
= lim
~→0

(
lim
G→0

5 (G,~)
)
,

does not imply that lim(G,~)→(0,0) 5 (G,~) exists.

Example 59. If

5 (G,~) =
{
G cos~−1 + ~ cosG−1 : G,~ ≠ 0,
0 : else,

then

lim
G→0

(
lim
~→0

5 (G,~)
)

DNE;

lim
~→0

(
lim
G→0

5 (G,~)
)

DNE;

lim
(G,~)→(0,0)

5 (G,~) = 0.

This example shows that if lim(G,~)→(0,0) 5 (G,~) exists, this does not imply that the iterated
limits

lim
G→0

(
lim
~→0

5 (G,~)
)
, lim

~→0

(
lim
G→0

5 (G,~)
)
,

must exist. However, it is true that if all three limits exists, then they must coincide.
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2.3 Continuity

Let 5 : � ⊆ R= → R, 0 ∈ �. We give two different definitions for the function 5 being continuous
at the point 0. The first is an n − X definition, whereas the second uses the notion of a limit.

Definition 2.16. 5 is continuous at 0 if

• ∀n > 0, ∃X > 0 such that, if G ∈ � and ‖G − 0‖ < X , then |5 (G) − 5 (0) | < n.

• limG→0 5 (G) exists and equals 5 (0).

5 is continuous on � if 5 is continuous at 0, for every 0 ∈ �.

Example 60. Fix : ∈ {1, . . . , =}, and let �: : R= → R denote the coordinate function

�: (G) = �: ((G1, . . . , G=)) = G: .

Fix 0 ∈ R= and n > 0. We then choose X = n > 0. If ‖G − 0‖ < X , then

|�: (G) = �: (0) | = |G: − 0: | ≤

√√
=∑
8=1
(G8 − 08)2 = ‖G − 0‖ < X = n.

Therefore, �: is continuous at 0 ∈ R=, and hence �: is continuous on R= for every : = 1, . . . , =.

The following theorem follows directly from the properties of limits.

Theorem 61. If 5 , 6 : Ω ⊆ R= → R are continuous functions at 0 ∈ Ω, then

1. 5 + 6, _5 , 5 6 are continuous at 0 (_ ∈ R).

2. 5

6
is continuous at 0, provided 6(0) ≠ 0.

Combining this theorem with the previous example of the coordinate function being continuous,
we see that all polynomials and rational functions are continuous

Example 62. The function 5 (G,~, I) = G3+3~I+I2−G +7~ is continuous on R3, and the function
6(G,~, I) = G3+~3+~I

G2+~2 is continuous on R3 \ {G = ~ = 0}.

Given a rational function& (G) = %1 (G)
%2 (G) for some polynomials %1, %2, we see that& is continuous

away from the zero level set of %2. That is, & : R= \ {%2 = 0} → R is continuous.
Suppose %2(0) = 0. Then & can be extended to a continuous function at 0 if and only if the

limit limG→0& (G) exists.

Example 63. If & (G,~) = G~+~3
G2+~2 , then & is continuous on R2 \ {0}. Fix< ≥ 0 and consider

lim
(G,<G)→(0,0)

& (G,<G) = lim
G→0

<G2 +<3G3

G2 +<2G2
= lim
G→0

< +<3G

1 +<2 =
<

1 +<2 .

Since this varies in<, the limit lim(G,~)→(0,0) & (G,~) DNE, and hence & cannot be extended to a
continuous function on all of R2.
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Example 64. If & (G,~) = G4−~4−5G2~2
G2+~2 , then & is continuous on R2 \ {0}. We note that

lim
(G,~)→(0,0)

& (G,~) = lim
A ↓0

A 4(cos4 \ − sin4 \ − 5 sin2 \ cos2 \ )
A 2

= lim
A ↓0

A 2 (cos4 \ − sin4 \ − 5 sin2 \ cos2 \ )︸                                     ︷︷                                     ︸
bounded in absolute value by 7

= 0,

where in the final equality we have used the Squeeze theorem. Therefore & can be extended to a
continuous function on all of R2, by setting

& (G,~) :=
{
G4−~4−5G2~2

G2+~2 : (G,~) ≠ (0, 0)
0 : G = ~ = 0.

.

Theorem 65. If 5 : Ω ⊆ R= → R is continuous at 0 ∈ Ω and 6 : R → R is continuous at
5 (0) ∈ R, then 6 ◦ 5 : Ω → R is continuous at 0, and hence

lim
G→0

6 ◦ 5 (G) = 6
(
lim
G→0

5 (G)
)
= 6 ◦ 5 (0) .

Proof. Fix n > 0. Since 6 is continuous, there exists [ > 0 such that for ~ ∈ R, if |~ − 5 (0) | < [,
then |6(~) − 6 ◦ 5 (0) | < n. Then, since 5 is continuous, there exists X > 0 such that, for G ∈ Ω,
if ‖G − 0‖ < X , then |5 (G) = 5 (0) | < [, which then implies that |6 ◦ 5 (G) − 6 ◦ 5 (0) | < n as
required. �

Example 66. Letting 5 = �: , the :-coordinate function from before, and 6(G) = |G |, we see that
the maps

(G1, . . . , G=) ↦→ |G: | are continuous, for every : = 1, . . . , =.

Example 67. Choosing the same 5 as the previous example, but 6(G) = |logG |, which is
continuous on (0,∞), we see that for any : ∈ {1, . . . , =}, the map

(G1, . . . , G=) ↦→ |logG: | is continuous on the half-space {G: > 0}.

Example 68.
sin(G2 + ~I), 4G−~, A =

√
G2 + ~2,

are all continuous functions everywhere in their domains.

2.4 Partial Derivatives

We now consider the rate of change of a function with respect to each variable individually.

Definition 2.17. Let 5 : Ω ⊆ R= → R with Ω open. For 8 ∈ {1, . . . , =}, we define the 8Cℎ-partial
derivative of 5 at G ∈ Ω to be

m5

mG8
(G) = lim

ℎ→0

5 (G + ℎ48) − 5 (G)
ℎ

,

where 48 = (0, . . . , 1, . . . , 0) ∈ R= is the unit vector with all components equal to zero except for
the 8Cℎ-component, which is 1.
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Example 69. For the function 5 (G,~) = G2 + ~2, we have

m5

mG
= 2G (regard ~ as a constant)

m5

m~
= 2~ (regard G as a constant)

We note that, at the point (1,−1), we have m5

mG
(1,−1) = 2 > 0, m5

m~
(1,−1) = −2 < 0, so

5 is increasing as G increases at (1,−1),
5 is decreasing as ~ increases at (1,−1).

Example 70. For the function 6(G,~, I) = G~2 − cos(GI), we have

m6

mG
= 6G = ~2 + I sin(GI)

m6

m~
= 6~ = 2G~

m6

mI
= 6I = G sin(GI)

Example 71. In this example we consider the function

5 (G,~) =
{
1 : G~ ≥ 0
0 : G~ < 0

.

To calculate the partial derivative 5G , we fix ~ ∈ R and differentiate with respect to G :

• Fix ~ = 1. Then

5 (G, 1) =
{
1 : G ≥ 0
0 : G < 0

,

and hence 5G (1, 1) = 0, 5G (0, 1) DNE.

• Fix ~ = 0. Then 5 (G, 0) ≡ 1 and hence 5G (G, 0) ≡ 0.

Similarly, 5~ (0, 0) = 0. However, 5 is not continuous at the origin.

The previous example shows that just because the partial derivatives exist at a point does not
imply that the function is continuous at this point.
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Higher Order Derivatives

Given a function 5 : R2 → R, there are exactly two first order partial derivatives 5G , 5~ . However,
we may then take partial derivatives of these functions and find four different second order partial
derivatives of 5 :

m2 5

mG2
= 5GG =

m(5G )
mG

,

m2 5

m~mG
=
m(5G )
m~

= 5G~,

m2 5

mGm~
=
m(5~)
mG

= 5~G ,

m2 5

m~2
= 5~~ =

m(5~)
m~

.

Repeating, we find that 5 has 2: different partial derivatives of order :. e.g. 5~~G is a partial
derivative of order three.

Example 72. Find all first and second order partial derivatives of the function 5 (G,~) = G sin~ +
~242G :

5G = sin~ + 2~242G

5GG = 4~242G

5G~ = cos~ + 4~42G

5~ = G cos~ + 2~42G

5~G = cos~ + 4~42G

5~~ = −G sin~ + 242G

In the previous example, 5G~ = 5~G . It turns out however, that this is not always true.

Example 73. Let

5 (G,~) =
{
G~ (G2−~2)
G2+~2 : (G,~) ≠ (0, 0)

0 : G = ~ = 0
.

For ~ ≠ 0, 5 (G,~) = G~ (G2−~2)
G2+~2 near (0, ~), and therefore near (0, ~) we have

5G (G,~) =
(3G2~ − ~3) (G2 + ~2) − 2G2~ (G2 − ~2)

(G2 + ~2)2 .

Substituting G = 0 into the above equation, we conclude that

5G (0, ~) =
−~5
~4

= −~, ∀~ ≠ 0.
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Alternatively, we have that

5G (0, 0) = lim
ℎ→0

5 (ℎ, 0) − 5 (0, 0)
ℎ

= lim
ℎ→0

0 − 0
ℎ

= 0,

and hence 5G (0, ~) = −~ for every ~ ∈ R, from which we deduce that 5G~ (0, 0) = −1.

Alternatively, 5 has asymmetry about the line ~ = G . That is

5 (1, 0) = −5 (0, 1), ∀(0, 1) ∈ R2.

In particular,

5~ (1, 0) = lim
ℎ→0

5 (1, 0 + ℎ) − 5 (1, 0)
ℎ

= lim
ℎ→0
− 5 (0 + ℎ,1) − 5 (0, 1)

ℎ
= −5G (0, 1),

and similarly, 5~G (1, 0) = −5G~ (0, 1). Substituting in 0 = 1 = 0, we find that 5~G (0, 0) =

−5G~ (0, 0) = −1.

This example shows 5G~ ≠ 5~G in general. The following theorem gives a sufficient condition
on 5 for these mixed partial derivatives to agree.

Theorem 74 (Clairaut’s Theorem). Let Ω ⊆ R2 open, and 5 : Ω → R. If both the partial
derivatives 5G~ and 5~G exist and are continuous everywhere in Ω, then 5~G = 5G~ on Ω.

Remark. To prove the theorem, we actually prove a slightly stronger version that what is stated
in the theorem: Ω ⊆ R2 open, 5 : Ω → R, 0 ∈ Ω. If both 5G~ and 5~G exist in an open ball
containing 0, and are continuous at 0, then 5G~ (0) = 5~G (0).

In order to prove Clairaut’s theorem, we shall use the Mean Value Theorem, the proof of which
can be found in any introductory mathematical analysis course.

Theorem 75 (Mean Value Theorem). Let 5 : [0, 1] → R be continuous on [0, 1] and differen-
tiable on (0, 1). Then there exists some 2 ∈ (0, 1) such that

5 ′(2) = 5 (1) − 5 (0)
1 − 0 .

Proof of Clairaut’s Theorem. We may assume that 0 = (0, 0) ∈ Ω. Let ℎ, : > 0 so that [0, ℎ] ×
[0, :] ⊆ Ω. We consider the constant

U = 5 (ℎ, :) − 5 (0, :) − 5 (ℎ, 0) + 5 (0, 0).

We now apply the Mean Value Theorem (MVT) in both the G and ~ directions separately. That is,
consider the function 6 : [0, ℎ] → R, given by 6(G) = 5 (G, :) − 5 (G, 0). By the MVT, we have
that there exists some ℎ1 ∈ (0, ℎ) such that

6′(ℎ1) =
6(ℎ) − 6(0)

ℎ
.
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Note that the LHS 6′(ℎ1) = 5G (ℎ1, :) − 5G (ℎ1, 0), and the denominator of the RHS 6(ℎ) − 6(0) =
5 (ℎ, :) − 5 (ℎ, 0) − 5 (0, :) + 5 (0, 0) = U . Therefore, we have

5G (ℎ1, :) − 5G (ℎ1, 0) = Uℎ−1.

Next, we consider the function� : [0, :] → R, given by� (~) := 5G (ℎ1, ~). Applying MVT again,
∃:1 ∈ (0, :) such that

5G~ (ℎ1, :1) = �~ (:1) =
� (:) −� (0)

:
=
5G (ℎ1, :) − 5G (ℎ1, 0)

:
= U (ℎ:)−1.

We now repeat the process but we swap the order of derivatives. That is, there exists (ℎ2, :2) ∈
(0, ℎ) × (0, :) such that

5~G (ℎ2, :2) = U (ℎ:)−1,

and therefore 5~G (ℎ2, :2) = 5G~ (ℎ1, :1). If we then take ℎ, : ↓ 0, this forces (ℎ1, :1), (ℎ2, :2) →
(0, 0). We can then use the continuity of 5G~ and 5~G to conclude that 5~G (0, 0) = 5G~ (0, 0). �

Definition 2.18. Let Ω ⊆ R= be open, 5 : Ω → R, A ∈ N0. We call 5 a �A -function if all partial
derivatives of 5 up to order A exist and are continuous on Ω.

5 is called a smooth function, or a �∞-function if it is a �A -function for every A ≥ 0.

Example 76. 5 is a �0-function if it is a continuous function.

Example 77. 5 (G,~) is a �2-function if all of the functions 5 , 5G , 5~, 5GG , 5G~, 5~G , 5~~ exist and
are continuous.

Example 78. The following class of functions are smooth within their domain of existence:
Polynomials, Rational functions, Exponentials, Logarithms, and Trignometric functions.

Example 79. Sums, differences, products, quotients and compositions of all of the classes of
functions from the previous example are also smooth within their domain of existence. e.g.
exp(G2 − ~) sin( G

~
) is a smooth function on {(G,~) ∈ R2 : ~ ≠ 0}.

The following Corollary of Clairaut’s theorem holds by repeated application of the theorem to
a function and its derivatives.

Corollary 2. If 5 : Ω → R is a �A -function on the open set Ω ⊆ R= for some A ≥ 0. Then the
order of taking partial derivatives does not matter for all partial derivatives up to order A .

Example 80. If 5 (G,~, I) is a �3-function, then

5GI = 5IG , 5G~I = 5IG~ = 5~IG , 5GG~ = 5G~G = 5~GG .

37



Week 3

3.1 Differentiability

In one dimension, 5 : R→ R is differentiable at 0 ∈ R if the following limit exists

5 ′(0) = lim
G→0

5 (G) − 5 (0)
G − 0 .

In the multivariable, or higher dimensional domain situation 5 : R= → R, 0 ∈ R=, why can’t
we use the same defintion?

lim
G→0

∈R︷        ︸︸        ︷
5 (G) − 5 (0)

G − 0︸︷︷︸
∈R=

.

We cannot divide a real number by a vector in R=! In order to formulate a suitable definition in
this situation, we reconsider the single variable case again.

Affine Approximations

Suppose 5 : R→ R is differentiable at 0 ∈ R. Then, for G close to 0, we have that

5 (G) ≈ !(G) := 5 (0) + 5 ′(0) (G − 0),

where !(G) is the best affine function (polynomial of degree one or less) to approximate 5 (G)
about the point 0.

To make this notion of best approximation more precise, let us consider the error function:

Y (G) := 5 (G) − !(G)
= 5 (G) − 5 (0) − 5 ′(0) (G − 0).

Since G − 0 ∈ R, we can divide through by it to see that

Y (G)
G − 0 =

5 (G) − 5 (0)
G − 0 − 5 ′(0),

and so by definition, taking G → 0 we have

lim
G→0

Y (G)
G − 0 = 5 ′(0) − 5 ′(0) = 0,
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or equivalently

lim
G→0

Y (G)
|G − 0 | = 0. (3.10)

That is, the error function is small compared to the distance between G and 0.
Exercise: Show that this choice of affine approximation is the only one for which (3.10) holds.
In higher dimensions, the graph of 5 should be approximated by a higher dimensional affine

object (e.g the tangent plane of I = 5 (G,~)).

Example 81. Let 5 : R2 → R and assume 5G (0, 1) and 5~ (0, 1) exist. Then we could take the
affine approximation at (0, 1) of 5 to be:

5 (G,~) ≈ !(G,~) := 5 (0, 1) + 5G (0, 1) (G − 0) + 5~ (0, 1) (~ − 1).

In particular, I = !(G,~) is a hyperplane touching Graph(5 ) at the point (0, 1, 5 (0, 1)).

This leads to the following definition

Definition 3.19. Let Ω ⊆ R= open, 0 ∈ Ω, 5 : Ω → R. Then, 5 is said to be differentiable at 0 if

• All partial derivatives m5

mG8
(0) exist, for 8 ∈ {1, . . . , =}.

• Given the affine approximation of 5 at 0

5 (G) = 5 (0) +
=∑
8=1

m5

mG8
(0) (G8 − 08)︸                            ︷︷                            ︸

! (G)

+ Y (G)︸︷︷︸
error

,

the error term satisfies limG→0
Y (G)
‖G−0 ‖ = 0.

That is, 5 is differentiable at 0 if 5 can be well-approximated by an affine function locally
about the point 0.

Remark. • !(G) is a degree one or less polynomial in the variables G1, . . . , G=.

• !(0) = 5 (0) and m!
mG8
(0) = m5

mG8
(0).

• ~ = !(G) is an =-dimensional hyperplane in R=+1 tangent to Graph(5 ) at (G, 5 (G)).

Example 82. Let 5 (G,~) = G2~.

(i) Show that 5 is differentiable at (1, 2).

(ii) Approximate 5 (1.1., 1.9) using the derivative.

(iii) Find the tangent plane of I = 5 (G,~) at the point (1, 2, 5 (1, 2)).
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To show (i), we calculate the first order partial derivatives of 5 :

5G = 2G~, 5~ = G2,

and hence, at the point (1, 2) we have 5G (1, 2) = 4, 5~ (1, 2) = 1. Our affine approximation at (1, 2)
is then

!(G,~) = 5 (1, 2) + 5G (1, 2) (G − 1) + 5~ (1, 2) (~ − 2)
= 2 + 4(G − 1) + (~ − 2).

Let Y (G,~) denote the corresponding error function. Since

lim
(G,~)→(1,2)

Y (G,~)
‖(G,~) − (1, 2)‖ = lim

(G,~)→(1,2)

G2~ − 2 − 4(G − 1) − (~ − 2)
‖(G,~) − (1, 2)‖ (ℎ = G − 1, : = ~ − 2)

= lim
(ℎ,:)→(0,0)

(1 − ℎ)2(2 + :) − 2 − 4ℎ − :
‖(ℎ, :)‖

= lim
(ℎ,:)→(0,0)

ℎ2: + 2ℎ: + 2ℎ2
√
ℎ2 + :2

= lim
A ↓0

A 3 cos2 \ sin\ + 2A 2 cos\ sin\ + 2A 2 cos2 \
A

= lim
A ↓0

A 2 cos2 \ sin\ + 2A cos\ sin\ + 2A cos2 \ = 0,

where the last equality is due to the Squeeze theorem. Therefore, 5 is differentiable at (1, 2).

For (ii), 5 (1.1, 1.9) ≈ !(1.1, 1.9) = 2 + 4(0.1) + 1(−0.1) = 2.3.

Finally, the tangent plane for part (iii) is given by I = !(G,~). In particular, 4G +~ − I = −4, so
that the tangent plane has normal vector (4, 1,−1).

Example 83. Is the function 5 (G,~) =
√
|G~ | differentiable at the origin?

Note that 5 (G, 0) = 0 for every G ∈ R, and 5 (0, ~) = 0 for every ~ ∈ R. So 5G (0, 0) =
limℎ→0

5 (ℎ,0)−5 (0,0)
ℎ

= 0, and similarly 5~ (0, 0) = 0.
Therefore, if 5 can be approximated by an affine function at the origin, the approximation is

!(G,~) ≡ 0, with error function Y = 5 . However,

lim
(G,~)→(0,0)

5 (G,~)
‖(G,~)‖ = lim

A ↓0

√
A 2 |cos\ sin\ |

A
= lim
A ↓0

√
|cos\ sin\ |,

which DNE, and therefore 5 is not differentiable at the origin.

Remark. In the previous example, along the line ~ =<G , we see that

5 (G,<G) =
√
|< | |G | .

Therefore, along the G-axis (< = 0), we have

5 (G, 0) = 0 = !(G, 0),
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and ! is a good approximation to 5 . However, along the line ~ = G (< = 1) we have

5 (G, G) = |G | ≠ 0 = !(G, G),

and ! is a bad approximation to 5 .

In the definition of differentiability, !(G) is defined using only the derivative along the coordi-
nate axes m5

mG8
. We therefore conclude that a function 5 is differentiable if the information in the

coordinate directions can tell you information in every direction (compare this with the previous
example).

Unlike the existence of partial derivatives by itself, a function being differentiable is strong
enough to imply continuity of the function at that point.

Theorem 84. If 5 (G) is differentiable at 0, then 5 (G) is continuous at 0.

Proof. Let !(G) denote the affine function approximation of 5 (G) at 0, and Y = 5 − !. Since 5 is
differentiable at 0,

lim
G→0

Y (G) = lim
G→0

Y (G)
‖G − 0‖ · limG→0 ‖G − 0‖ = 0 · 0 = 0.

Therefore,

lim
G→0

5 (G) = lim
G→0

!(G) + lim
G→0

Y (G)

= 5 (0) + lim
G→0

(
=∑
8=1

m5

mG8
(0) (G8 − 08)

)
+ 0

= 5 (0),

and 5 is continuous at 0. �

Exercise: Show that the affine function ! : R= → R defined by

!(G) = _ + G · U, ∀G ∈ R=,

for some _ ∈ R and U ∈ R= is differentiable everywhere, directly from the definition.

Rules for Diffentiation

Theorem 85. If Ω ⊆ R= open, and 5 , 6 : Ω → ' are differentiable at 0 ∈ Ω, then

(i) 5 + 6, _5 , 5 · 6 are differentiable at 0.

(ii) 5

6
is differentiable at 0 provided 6(0) ≠ 0.

The proof of this theorem is very similar to those of one-variable (e.g see Math2050).
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Example 86. Constant functions are differentiable.
Coordinate functions, e.g G ↦→ G: , are differentiable.
Polynomials, e.g 4G3~ + G~2 − G~I + I5, are differentiable.
Rational functions, e.g G3~+I

G2+~2+I2+1 , are differentiable.

The following theorem provides a simpler way to verify differentiability for more regular
functions.

Theorem 87. Let Ω ⊆ R= be open with 5 a �1-function on Ω. Then 5 is differentiable on Ω.

Remark. We require all of the partial derivatives to exist and be continuous on the entire open
set Ω, and not just at a single point.

Example 88. Suppose 5 : R2 → R is a continuous function and that 5G , 5~ exist and are
continuous on a small open ball �n (0) about the origin. Then 5 is differentiable on �n (0). In
particular, 5 is differentiable at the origin 0 ∈ R2.

Example 89. Let 5 : Ω ⊆ R3 → R be defined by 5 (G,~, I) = G4G+~ − log(G + I), where
Ω = {G + I > 0} open. Since

5G = (1 + G)4G+~ − (G + I)−1

5~ = G4G+~

5I = −(G + I)−1,

are all continuous functions, 5 is �1 on Ω, and hence 5 is differentiable on Ω.

Proof. We give the proof for = = 2. The proof for = ≥ 3 is exactly the same but with messier
notation.

Suppose (0, 1) ∈ Ω ⊆ '2 and �X ((0, 1)) ⊆ Ω for some X > 0. For any point (G,~) ∈ �X ((0, 1)),
we can apply the MVT to find some : lying between 1 and ~, and some ℎ lying between G and 0,
so that

5 (G,~) − 5 (0, 1) = (5 (G,~) − 5 (G, 1)) + (5 (G, 1) − 5 (0, 1))
= 5~ (G, :) (~ − 1) + 5G (ℎ,1) (G − 0) .

Therefore, we can use the partial derivatives at these points to bound the error function in the
following way

|Y (G,~) |
‖ (G,~) − (0, 1)‖ =

��5 (G,~) − 5 (0, 1) − 5G (0, 1) (G − 0) − 5~ (0, 1) (~ − 1)��
‖(G,~) − (0, 1)‖

=

��(5~ (G, :) − 5~ (0, 1)) (~ − 1) + (5G (ℎ,1) − 5G (0, 1)) (G − 0)��
‖(G,~) − (0, 1)‖

≤
��5~ (G, :) − 5~ (0, 1)�� · |~ − 1 |

‖ (G,~) − (0, 1)‖ + |5G (ℎ,1) − 5G (0, 1) | ·
|G − 0 |

‖ (G,~) − (0, 1)‖
≤

��5~ (G, :) − 5~ (0, 1)�� + |5G (ℎ,1) − 5G (0, 1) | .
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Taking (G,~) → (0, 1) will force (G, :), (ℎ,1) → (0, 1), and so by the continuity of 5G and 5~ and
the Squeeze theorem,

lim
(G,~)→(0,1)

|Y (G,~) |
‖ (G,~) − (0, 1)‖ = 0.

This is indeed the definition of 5 being differentiable at (0, 1). �

3.2 Gradient and Directional Derivatives

Definition 3.20. Let Ω ⊆ R= be open, 0 ∈ Ω, 5 : Ω → R. We define the gradient vector of 5 at 0
to be

∇5 (0) =
(
m5

mG1
(0), . . . , m5

mG=
(0)

)
∈ R= .

Example 90. If 5 (G,~) = G2 + 2G~, then its gradient is given by

∇5 (G,~) = (5G , 5~) = (2G + 2~, 2G),

and so at the point (1, 2) ∈ R2, its gradient is the vector ∇5 (1, 2) = (6, 2) ∈ R2.

If a function 5 is differentiable at a point 0, then its affine approximation at that point can be
expressed more succinctly

!(G) = 5 (0) +
=∑
8=1

m5

mG8
(G8 − 08)

= 5 (0) + ∇5 (0) · (G − 0) .

Definition 3.21. Let Ω ⊆ R= be open, 0 ∈ Ω, 5 : Ω → R. For any unit vector D ∈ R= (‖D‖ = 1),
the directional derivative of 5 in the direction D at 0 is

�D 5 (0) = lim
ℎ→0

5 (0 + ℎD) − 5 (0)
ℎ

,

i.e, the rate of change of 5 in direction D at the point 0.

Example 91. Choosing D = 48 ∈ R=, we recover the partial derivative �48 5 (0) =
m5

mG8
(0), for any

8 = 1, . . . , =.

Lemma 92. If 5 is differentiable at 0, and D ∈ R= is a unit vector, then

�D 5 (0) = ∇5 (0) · D.

Proof. Since 5 is differentiable at 0, we have

5 (G) = 5 (0) + ∇5 (0) · (G − 0) + Y (G), (3.11)

for some error function Y (G) satisfying limG→0
Y (G)
‖G−0 ‖ = 0. Setting G = 0 + ℎD in (3.11), we find

that
5 (0 + ℎD) − 5 (0) = ℎ (∇5 (0) · D) + Y (0 + ℎD),
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and therefore

�D 5 (0) = lim
ℎ→0

5 (0 + ℎD) − 5 (0)
ℎ

= ∇5 (0) · D + lim
ℎ→0

Y (0 + ℎD)
ℎ

= ∇5 (0) · D. �

For a non-zero vector E ∈ R=, then the direction of E is the unit vector E
‖E ‖ .

Example 93. Let 5 (G,~) = arcsin( G
~
). Find the rate of change of 5 at the point (1,

√
2) in the

direction of E = (1,−1).
Solution: Set D = E

‖E ‖ = (
1√
2
,− 1√

2
) to be the direction of E . We note that

5G (G,~) =
1√

~2 − G2
, 5~ (G,~) =

−G
~
√
~2 − G2

,

and so 5 , 5G , 5~ are all continuous near the point (1,
√
2). In particular 5 is �1 near (1,

√
2) and

hence 5 is differentiable at (1,
√
2).

We can therefore use the gradient of 5 to calculate the desired directional derivative

�D 5 ((1,
√
2)) = ∇5 ((1,

√
2)) · D

= (5G (1,
√
2), 5~ (1,

√
2)) · ( 1√

2
,− 1
√
2
)

=

(
1,− 1
√
2

)
· ( 1√

2
,− 1
√
2
) = 1
√
2
+ 1
2
.

Geometric Meaning of the Gradient

If 5 is differentiable at 0, D ∈ R= a unit vector, then

�D 5 (0) = ∇5 (0) · D.

By the Cauchy-Schwarz inequality,

|∇5 (0) · D | ≤ ‖∇5 (0)‖ · ‖D‖︸︷︷︸
=1

= ‖∇5 (0)‖ .

Moreover, if ∇5 (0) ≠ 0, then

−‖∇5 (0)‖ ≤ ∇5 (0) · D ≤ ‖∇5 (0)‖,

where equality holds in the first inequality iff ∇5 (0) = −_D for some _ > 0, and equality holds in
the second inequality iff ∇5 (0) = _D for some _ > 0.

Indeed, at 0, 5 (G) increases (decreases) most rapidly in the direction of ∇5 (0) (−∇5 (0)) at a
rate of ‖∇5 (0)‖.
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Remark. When we defined directional derivatives, we specified that D was a unit vector. We
could have instead defined a directional derivative for a general vector E ∈ R= in the exact same
way

�E 5 (0) := lim
ℎ→0

5 (0 + ℎE) − 5 (0)
ℎ

.

We note that

�E 5 (0) =
{
‖E ‖� E

‖E‖
5 (0) : E ≠ 0

0 : E = 0
,

and therefore, we lose no information by restricting our definition of directional derivatives to the
case where E is a unit vector.

Total Derivatives

Given a function 5 : Ω ⊆ R= → ', with Ω open, differentiable at 0 ∈ Ω, we consider the affine
approximation of 5 (G) at 0,

5 (G) = 5 (0) + ∇5 (0) · (G − 0) + Y (G) .

If we denote the change in 5 by Δ5 = 5 (G) − 5 (0), and the change in each coordinate by
ΔG8 = G8 − 08 , we find that

Δ5 ≈
=∑
8=1

m5

mG8
(0)ΔG8 .

From the fact 5 is differentiable at 0, we see that this approximation holds up to first order:

Δ5 −
=∑
8=1

m5

mG8
(0)ΔG8 = > (‖G − 0‖) .

This first order approximation is denoted by

3 5 (0) =
=∑
8=1

m5

mG8
(0)3G8 , (3.12)

and is called the total derivative of 5 at 0.

Remark. Technically, one can make sense of (3.12) by interpreting 3 5 and 3G8 as functions from
Ω into the space of linear maps from R= to R.

Example 94. Let + (A, ℎ) = cA 2ℎ denote the volume of a cylinder with height ℎ and radius A .
Since + is �1, it is differentiable, with total derivative

3+ =
m+

mA
3A + m+

mℎ
3ℎ

= (2cAℎ)3A + (cA 2)3ℎ.

Therefore the change in volume of the cylinder when (A, ℎ) goes from (3, 12) to (3.08, 11.7)
is roughly given by 3+ when 3A = 0.08 and 3ℎ = −0.3. That is, the change in volume is
approximately (up to first order)

(2c) (3) (12) (0.08) + (c) (9) (−0.3) = 3.06c ≈ 9.61.
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Summary

Suppose 5 : R= → R, 0 ∈ R=.

Types of Derivatives:

• Directional: �D 5 (0) = limℎ→0
5 (0+ℎD)−5 (0)

ℎ
, with ‖D‖ = 1.

• Partial: m5

mG8
(0) = �48 5 (0), for the standard basis 48 ∈ R=.

• Gradient: ∇5 (0) =
(
m5

mG1
(0), . . . , m5

mG=
(0)

)
∈ R=.

• Total: 3 5 (0) = ∑=
8=1

m5

mG8
(0)3G8 .

• Higher order: e.g m2 5
mG 9 mG8

(0) = 5G8G 9 (0) = 58 9 (0).

5 is a �: -function if 5 and all of its partial derivatives up to (and including) order : exist and are
continuous.

Affine Approximation:

• !(G) = 5 (G) + ∇5 (0) · (G − 0).

• Y (G) = 5 (G) − !(G)

• 5 (G) is differentiable at 0 if limG→0 Y (G) (‖G − 0‖)−1 = 0.

Relations Between Derivatives:

�∞ ) · · · ) �:+1 ) �: ) · · · ) �1 ) �0.

5 is �1 on an open set containing 0

5 is differentiable at 0

�D 5 (0) exists ∀D ∈ R= 5 is continuous at 0

m5

mG8
(0) exists ∀8 = 1, . . . , =

Exercise: Find functions 5 : R= → R such that

• 5 is continuous on R=, but at some point 0 ∈ R=, none of the partial derivatives m5

mG8
(0)

exist.
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• At some point 0 ∈ R=, �D 5 (0) exists for all unit vectors D, but 5 is not continuous at 0.

• At some point 0 ∈ R=, all of the partial derivatives m5

mG8
(0) exist, but not every directional

derivative �D 5 (0) exists.
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Week 4

4.1 Jacobian Matrices

We begin with a brief recap on matrix multiplication. Let � be an : ×< matrix, and � a< × =
matrix. Then we can multiply the two matrices to get the : × = matrix ��. More explicitly, let

� =
©«
011 · · · 01<
...

. . .
...

0:1 · · · 0:<

ª®®¬
which we view as a linear map from R< to R: . That is, given a vector G ∈ R<, we have

�G =
©«
011 · · · 01<
...

. . .
...

0:1 · · · 0:<

ª®®¬
©«
G1
...

G<

ª®®¬ =
©«
011G1 + · · · + 01<G<

...

0:1G1 + · · · + 0:<G<

ª®®¬ ∈ R: . (4.13)

Choosing the row vectors

U8 = (081, . . . , 08<) ∈ R<, ∀1 ≤ 8 ≤ :,

we can rewrite (4.13) as

�G =
©«
−U1−
...

−U:−

ª®®¬
©«
|
G

|

ª®¬ =
©«
U1 · G
...

U: · G

ª®®¬ ∈ R: .
Similarly, given a row vector ~ = (~1, . . . , ~<) ∈ R<, we can multiply � on the left by ~ to get

a vector in R=.

~� =
(
~1 · · · ~<

) ©«
111 · · · 11=
...

. . .
...

1<1 · · · 1<=

ª®®¬ =
(
~1111 + · · · + ~<1<1, · · · , ~111= + · · · + ~<1<=

)
∈ R= .

(4.14)
Choosing now the column vectors

V 9 =
©«
119
...

1<9

ª®®¬ ∈ R<, ∀1 ≤ 9 ≤ =,

48



we can rewrite (4.14) as

~� =
(
−~−

) ©«
| |
V1 · · · V=
| |

ª®¬ =
(
~ · V1, · · · , ~ · V=

)
∈ R= .

Therefore, we can write the matrix product �� as

�� =
©«
011 · · · 01<
...

. . .
...

0:1 · · · 0:<

ª®®¬
©«
111 · · · 11=
...

. . .
...

1<1 · · · 1<=

ª®®¬ =
©«
−U1−
...

−U:−

ª®®¬
©«
| |
V1 · · · V=
| |

ª®¬ =
©«
U1 · V1 · · · U1 · V=
...

. . .
...

U: · V1 · · · U: · V=

ª®®¬
Example 95.

�︷ ︸︸ ︷(
1 2
3 4

) �︷        ︸︸        ︷(
5 6 7
8 9 10

)
=

(
(1, 2) · (5, 8) (1, 2) · (6, 9) (1, 2) · (7, 10)
(3, 4) · (5, 8) (3, 4) · (6, 9) (3, 4) · (7, 10)

)
=

(
21 24 27
47 54 61

)
︸           ︷︷           ︸

��

Given a multivariable function 5 : Ω ⊆ R= → R<, we know that we can reduce its complexitiy
by studying its component functions

5 (G) =
©«
51(G)
...

5< (G)

ª®®¬ ∈ R<,
with 58 : Ω → R, for 1 ≤ 8 ≤ <. We now suppose that m58

mG 9
(0) exist for each 8 ∈ {1, . . . ,<} and

9 ∈ {1, . . . , =}, for some 0 ∈ Ω.
For any fixed 1 ≤ 8 ≤ <, we note that

58 (G) = 58 (0) + ∇58 (0) · (G − 0)︸             ︷︷             ︸
1×= =×1

+Y8 (G),

where we regard the gradient as a row vector and (G −0) as a column vector in order to use matrix
multiplication. In particular, we can gather these< equations together in the form

©«
51(G)
...

5< (G)

ª®®¬ =
©«
51(0)
...

5< (0)

ª®®¬ +
©«
−∇51(0)−

...

−∇5< (0)−

ª®®¬︸          ︷︷          ︸
<×=

©«
G1 − 01

...

G= − 0=

ª®®¬︸     ︷︷     ︸
=×1

+
©«
Y1(G)
...

Y< (G)

ª®®¬ ∈ R< .
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Definition 4.22. We define the Jacobian matrix of 5 at 0 to be the< × = matrix

�5 (0) =
©«
m51
mG1
(0) · · · m51

mG=
(0)

...
. . .

...
m5<
mG1
(0) · · · m5<

mG=
(0)

ª®®®¬ =
©«
−∇51(0)−

...

−∇5< (0)−

ª®®¬ ,
and the best affine approximation of 5 at 0 to be ! : R= → R<, given by

!(G) = 5 (0) + �5 (0) (G − 0) ∈ R<, ∀G ∈ R= .

Moreover, we say that 5 is differentiable at 0 if the error term Y (G) = 5 (G) − !(G) satisfies

lim
G→0

‖Y (G)‖
‖G − 0‖ = 0.

Remark. Note that if 5 is real valued (< = 1), then �5 (0) = ∇5 (0). Also, from our discussion
of limits of vector-valued functions

lim
G→0

‖Y (G)‖
‖G − 0‖ = 0 ⇐⇒ lim

G→0
Y8 (G)
‖G − 0‖ , ∀8 ∈ {1, . . . ,<}.

So 5 is differentiable at 0 if and only if all of its components 58 are differentiable at 0.

In the language of total derivatives, we have

5 (G) − 5 (0)︸        ︷︷        ︸
Δ5

≈ �5 (0) · (G − 0)︸  ︷︷  ︸
ΔG

That is, we consider the Jacobian as a linear map �5 (0) : R= → R<, mapping ΔG ∈ R= to
Δ5 ∈ R<. In particular,

3 5 = �5 (0) 3G.

Example 96. Let 5 (G,~) = ((~ + 1) logG, G2 − sin~ + 1).

a) Find �5 (1, 0).

b) Approximate 5 (0.9, 0.1).

Solution:

a) Calculating partial derivatives we have

�5 =

(
m51
mG

m51
m~

m52
mG

m52
m~

)
=

( ~+1
G

log(G)
2G − cos~

)
.

Therefore

�5 (1, 0) =
(
1 0
2 −1

)
.
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b)

!(G,~) = 5 (1, 0) + �5 (1, 0)
(
G − 1
~ − 0

)
=

(
0
2

)
+

(
1 0
2 −1

) (
G − 1
~

)
=

(
G − 1
2G − ~

)
.

Therefore

5 (0.9, 0.1) ≈ !(0.9, 0.1) =
(
−0.1
1.7

)
.

4.2 Chain Rule

Recall, for two differentiable functions 5 , 6 : R→ R of one variable, the chain rule states that

(6 ◦ 5 ) ′(G) = 6′(5 (G)) · 5 ′(G),

or, alternatively, if we label ~ = 5 (G) and I = 6(~), then

3I

3G
=
3I

3~
· 3~
3G
.

Example 97. If 5 (G) = G2 and 6(G) = 2G + 1, then 6 ◦ 5 (G) = 2G2 + 1. In particular,

(6 ◦ 5 ) ′(G) = 4G = 2 · 2G = 6′(5 (G)) · 5 ′(G) .

For multivariable functions, a similar expression holds between the Jacobian matrices, where
instead of a product we have matrix multiplication.

Theorem 98 (Chain Rule). Let 5 : Ω1 ⊆ R= → R<, 6 : Ω2 ⊆ R< → R: , with Ω1,Ω2 open.
Suppose that 5 is differentiable at 0 ∈ Ω1 and 6 is differentiable at 1 = 5 (0) ∈ Ω2. Then 6 ◦ 5 is
differentiable at 0 with

� (6 ◦ 5 ) (0)︸        ︷︷        ︸
:×=

= �6(5 (0))︸     ︷︷     ︸
:×<

·�5 (0)︸ ︷︷ ︸
<×=

.

Example 99. Let 5 : R→ R2, 6 : R2 → R2 be defined by

5 (\ ) = (cos\, sin\ ), 6(D, E) = (2DE,D2 − E2) .

Note that 6 ◦ 5 : R→ R2, so that � (6 ◦ 5 ) (\ ) is a 2 × 1 matrix for any value of \ ∈ R. There are
two potential ways to calculate the derivative of this composition
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Method 1: Find the composition explicitly.

6 ◦ 5 (\ ) = 6(cos\, sin\ )
= (2 cos\ sin\, cos2 \ − sin2 \ )
= (sin 2\, cos 2\ ) .

Therefore

� (6 ◦ 5 ) (\ ) =
(
2 cos 2\
−2 sin 2\

)
.

Method 2: Use the Chain Rule.

�5 (\ ) =
(
− sin\
cos\

)
,

�6(D, E) =
(
2E 2D
2D −2E

)
,

�6(5 (\ )) =
(
2 sin\ 2 cos\
2 cos\ −2 sin\

)
.

By the Chain Rule

� (6 ◦ 5 ) (\ ) = �6(5 (\ )) ◦ �5 (\ )

=

(
2 sin\ 2 cos\
2 cos\ −2 sin\

)
·
(
− sin\
cos\

)
=

(
−2 sin2 \ + 2 cos2 \
−4 cos\ sin\

)
=

(
2 cos 2\
−2 sin 2\

)
.

Example 100. If 5 (G,~) = (G2, 3G~, G + ~2) and 6(D, E,F) = DF
E

, then

�5 (G,~) = ©«
2G 0
3~ 3G
1 2~

ª®¬ ,
�6(D, E,F) =

(
F
E
, −DF
E2
, D
E

)
,

Therefore,

�5 (1, 1) = ©«
2 0
3 3
1 2

ª®¬ , �6(5 (1, 1)) = �6(1, 3, 2) =
( 2
3 ,
−2
9 ,

1
3
)
,

and

� (6 ◦ 5 ) (1, 1) = �6(5 (1, 1)) · �5 (1, 1) =
( 2
3 ,
−2
9 ,

1
3
) ©«
2 0
3 3
1 2

ª®¬ = (1, 0) . (4.15)
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In the previous example, we could regard 5 as a change of variables from G,~ to D, E,F , and
hence we could view the function 6 ◦ 5 as expressing 6 as a function of G and ~. In particular, by
a slight abuse of notation, we could read off (4.15) as

m6

mG
(1, 1) = 1,

m6

m~
(1, 1) = 0.

That is, in classical notation, we can express the chain rule as follows:

m6

mG
=
m6

mD
· mD
mG
+ m6
mE
· mE
mG
+ m6
mF
· mF
mG

m6

mG
=
m6

mD
· mD
mG
+ m6
mE
· mE
mG
+ m6
mF
· mF
mG

Example 101. LetF (G,~, I) =
√
G2 + ~2 + I2, and

G = 34C sin B, ~ = 34C cos B, I = 44C .

Find mF
mB

at B = C = 0.
Solution: By the chain rule in classical notation, we have

mF

mB
=
mF

mG
· mG
mB
+ mF
m~
· m~
mB
+ mF
mI
· mI
mB

=
G√

G2 + ~2 + I2
· 34C cos B − ~√

G2 + ~2 + I2
· 34C sin B .

As B = C = 0, (G,~, I) = (0, 3, 4) and hence

mF

mB
|(B,C )=(0,0) = 0.

Example 102. Roy is walking with position at time C given by

G (C) = C3 + 1, ~ (C) = 2C2.

His altitude is � (G,~) = G2 − ~2 + 100.

a) Is Roy going uphill or downhill at C = 1?

b) Which direction should he go instead at time C = 1 to move downhill the most quickly?

Solution:

a) We must find m�
mC
|C=1. By the Chain rule

m�

mC
=
m�

mG
· mG
mC
+ m�
m~
· m~
mC

= (2G) (3C2) + (−2~) (4C)
= 2(C3 + 1) (3C2) − 4C2(4C)
= 6C5 − 16C3 + 6C2.
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Therefore
m�

mC
|C=1 = 6 − 16 + 6 = −4 < 0,

and Roy is going downhill at C = 1.

b) At C = 1, (G,~) = (2, 2), and ∇� (G,~) = (2G,−2~). So at time C = 1, the gradient of �
is given by ∇� (2, 2) = (4,−4). Therefore � decreases most rapidly in the direction of
−∇� (2, 2), which is given by the vector

D = (− 1
√
2
,
1
√
2
) .

That is, Roy should travel in the direction D, which if (1, 0) points east and (0, 1) points
north, is northwest.

Note that in the previous example

m�

mC
= ∇� · ( mG

mC
,
m~

mC
),

which in words can be stated as the rate of change of the altitude is given by the gradient of the
altitude dotted with the velocity you are travelling.

Operator Norm

Before proving the chain rule, we make a brief detour regarding the operator norm. Let � : R= →
R< be a linear map and for a non-zero vector G ∈ R=, consider the quantity

‖�G ‖
‖G ‖ ∈ R,

which is the length of the vector �G ∈ R< divided by the length of the vector G ∈ R=. Note that
since � is linear,

�

(
G

‖G ‖

)
=
�(G)
‖G ‖ ,

and so

‖�
(
G

‖G ‖

)
‖ = ‖�G ‖‖G ‖ .

Therefore, we may assume that G is a unit vector and consider the quantity ‖�(G)‖ ∈ R instead.
For any unit vector G ∈ R=, we note that the 8Cℎ-component of �G (for some 1 ≤ 8 ≤ <)

satisfies the inequality
| (�G)8 | = |U8 · G | ≤ ‖U8 ‖ · ‖G ‖︸︷︷︸

=1

= ‖U8 ‖,

where U8 denotes the 8Cℎ-row of � as before. In particular, we have

‖�G ‖2 =
<∑
8=1
(�G)28 ≤

<∑
8=1
‖U8 ‖2 =

<∑
8=1

=∑
9=1

028 9 = ‖�‖ < ∞,
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where the right hand side is the length of � when considered as a vector in the vector space R=<.
Hence we have a uniform upper bound on our quantity for any unit vector G ∈ R=. This leads to
the following definition.

Definition 4.23. Let � : R= → R< be a linear map. The operator norm of � is defined to be

‖�‖>? := sup
G ∈R=\{0}

‖�G ‖
‖G ‖ = sup

‖G ‖=1
‖�G ‖.

Remark. Directly from the definition we find that the inequality

‖�G ‖ ≤ ‖�‖>? ‖G ‖,

holds for every G ∈ R=.

Example 103. Consider the matrix � =

(
2 0
0 1

)
Note that for any unit vector E , we have

�E =

(
2 0
0 1

) (
G

~

)
=

(
2G
~

)
,

and so
‖�E ‖ =

√
4G2 + ~2 ≤

√
4G2 + 4~2 = 2,

or ‖�‖>? ≤ 2. However, since ‖�(41)‖ = 2, we can conclude that ‖�‖>? = 2.

Exercise: Suppose � is a = × = matrix with real eigenvalues _1, . . . , _= ∈ R. What is the
operator norm ‖�‖>? in terms of the eigenvalues?

Proof of Chain Rule. Since 5 is differentiable at 0

5 (G) − 5 (0) = �5 (0) (G − 0) + Y5 (G), ∀G ∈ Ω1, (4.16)

with lim
G→0

‖Y5 (G) ‖
‖G−0 ‖ = 0. Since 6 is differentiable at 1

6(~) − 6(1) = �6(1) (~ − 1) + Y6 (~), ∀~ ∈ Ω2, (4.17)

with lim
~→1

‖Y6 (~) ‖
‖~−1 ‖ = 0. Setting ~ = 5 (G), 1 = 5 (0), and substituting (4.16) into (4.17)

6 ◦ 5 (G) − 6 ◦ 5 (0) = �6(5 (0))
(
�5 (0) (G − 0) + Y5 (G)

)
+ Y6 (5 (G))

= �6(5 (0)) · �5 (0)︸                 ︷︷                 ︸
� (6◦5 ) (0)

(G − 0) + �6(5 (0))Y5 (G) + Y6 (5 (G))︸                            ︷︷                            ︸
Y6◦5 (G)

.

Therefore, to finish the proof, it suffices to show that

lim
G→0

‖Y5 ◦6 (G)‖
‖G − 0‖ = 0.
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In order to do this, by the triangle inequality

‖Y5 ◦6 (G)‖
‖G − 0‖ ≤

‖�6(5 (0))Y5 (G)‖
‖G − 0‖ +

‖Y6 (5 (G))‖
‖G − 0‖ ,

so if the limit as G → 0 of both terms on the right hand side is zero, then we are done by the
Squeeze theorem. We first note that

‖�6(5 (0)) · Y5 (G)‖ ≤ ‖�6(5 (0))‖>? · ‖Y5 (G)‖,

and since 5 is differentiable at 0,

lim
G→0

‖�6(5 (0))‖>? ‖Y5 (G)‖
‖G − 0‖ = ‖�6(5 (0))‖>? · lim

G→0

‖Y5 (G)‖
‖G − 0‖ = 0.

Therefore by the Squeeze theorem

lim
G→0

‖�6(5 (0)) · Y5 (G)‖
‖G − 0‖ = 0.

Next, we note that if 5 (G) = 5 (0) = 1, then since Y6 (1) = 0, the quantity we want to control
‖Y6 (5 (G)) ‖
‖G−0 ‖ is identically zero, and there is nothing to show. Thus, without loss of generality, we

may assume that 5 (G) ≠ 5 (0) and hence rewrite the quantity as

‖Y6 (5 (G))‖
‖G − 0‖ =

‖Y6 (5 (G))‖
‖ 5 (G) − 5 (0)‖ ·

‖ 5 (G) − 5 (0)‖
‖G − 0‖ .

Since for G near 0, we can bound the quantity

‖ 5 (G) − 5 (0)‖
‖G − 0‖ =

‖�5 (0) (G − 0) + Y5 (G)‖
‖G − 0‖

≤ ‖�5 (0) (G − 0)‖‖G − 0‖ +
‖Y5 (G)‖
‖G − 0‖

≤ ‖�5 (0)‖>? + 1 < ∞,

and as

lim
G→0

‖Y6 (5 (G))‖
‖ 5 (G) − 5 (0)‖ = lim

~→1

‖Y6 (~)‖
‖~ − 1‖ = 0,

it follows that

lim
G→0

‖Y6 (5 (G))‖
‖G − 0‖ = 0. �

Summary

(i) 5 : Ω ⊆ R→ R (one variable, real-valued).

�5 (G) = 3 5

3G
(1 × 1 matrix)
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(ii) 5 : Ω ⊆ R= → R (multivariable, real-valued).

�5 (G) = ∇5 (G) = ( m5
mG1
(G), . . . , m5

mG=
(G)) (1 × = matrix)

(iii) 5 : Ω ⊆ R= → R< (multivariable, vector-valued).

�5 (G) =
©«
−∇51(G)−

...

−∇5< (G)−

ª®®¬ =

(
m58

mG 9
(G)

)
8, 9

(< × = matrix)

Chain Rule:
(G1, . . . , G=)

5
−→ (~1, . . . , ~<)

6
−→ (61, . . . , 6: ),

68 = 68 (~1, . . . , ~<) is a function of the variables ~1, . . . , ~<,

~ 9 = 59 (G1, . . . , G=) is a change of variables from the G8 to the ~ 9 .

Then, the components of the composition 6 ◦ 5 can be considered as 68 = 68 (G1, . . . , G=);
functions of the variables G1, . . . , G=. With this set-up, the Chain Rule becomes

©«
m61
mG1

· · · m61
mG=

...
. . .

...
m6:
mG1

· · · m6:
mG=

ª®®®¬ =

©«
m61
m~1

· · · m61
m~<

...
. . .

...
m6:
m~1

· · · m6:
m~<

ª®®®¬ ·
©«
m~1
mG1

· · · m~1
mG=

...
. . .

...
m~<
mG1

· · · m~<
mG=

ª®®®¬
Looking at the 8Cℎ row and 9Cℎ column of the matrix on the left hand side, we find that

m68

mG 9
=

(
m68
m~1
, . . . ,

m68
m~<

)
·
©«
m~1
mG 9
...

m~<
mG 9

ª®®®¬ =

<∑
0=1

m68

m~0
· m~0
mG 9

.

Applications of the Chain Rule

Theorem 104. 5 : Ω ⊆ R= → R, Ω open, 2 ∈ R, ( = 5 −1(2) and 0 ∈ ( . If 5 is differentiable at 0
with ∇5 (0) ≠ 0, then ∇5 (0) ⊥ ( at 0.

Remark. By ∇5 (0) ⊥ ( at 0, we mean that for any tangent vector E ∈ R= to ( at 0, ∇5 (0) ⊥ E .

Example 105. If 5 (G,~) = G2 +~2, ( = 5 −1(25) is the circle centred at the origin of radius 5, and
0 = (4, 3) ∈ ( , then ∇5 (G,~) = (2G, 2~) and so ∇5 (4, 3) = (8, 6), which is certainly normal to the
circle at the point (4, 3).

Example 106. Let ( = {G2 + 4~2 + 9I2 = 22} be an ellipsoid centred at the origin. In order to find
the tangent plane of ( at the point (3, 1, 1), we consider the function 5 (G,~, I) = G2 + 4~2 + 9I2
so that ( = 5 −1(22). Then ∇5 (G,~, I) = (2G, 8~, 18I), or ∇5 (3, 1, 1) = (6, 8, 18) which is

57



perpendicular to ( at (3, 1, 1). That is, (6, 8, 18) is a normal vector to the tangent plane, and hence
the tangent plane has equation

((G,~, I) − (3, 1, 1)) · (6, 8, 18) = 0,

which simplifies to 3G + 4~ + 9I = 22.

Proof. Let W : (n, n) → ( be any curve inside the level set ( such that W (0) = 0. Then its derivative
W ′(0) is a tangent vector to ( at 0 (in fact, this is how we technically define tangent vectors to a
manifold). Since the curve W always lies within the level set ( , we find that

5 ◦ W (C) = 2, ∀C ∈ (−n, n).

In particular, (5 ◦W) ′(C) = 0 for any C ∈ (−n, n). Alternatively, we can apply the chain rule to find
that

(5 ◦ W) ′(C) = ∇5 (W (C)) · W ′(C), ∀C ∈ (−n, n) .

Setting C = 0, we find that ∇5 (0) · W ′(0) = 0. Repeating for all possible curves W , we find that
∇5 (0) is orthogonal to every tangent vector to ( at 0. �

Remark. By applying the chain rule to 5 composed instead with the straight line U (C) = 0 + CD,
for some unit vector D ∈ R=, we find that

�D 5 (0) = (5 ◦ U) ′(0) = ∇5 (U (0)) · U ′(0) = ∇5 (0) · D.

So the Chain Rule also gives an alternative proof of Lemma 92.

Implicit Differentiation

Consider the circle {G2 + ~2 = 1}. How do we find 3~

3G
at the point ( 35 ,

−4
5 )?

Locally near ( 35 ,
−4
5 ), we find that ~2 = 1 − G2 and ~ < 0 implies ~ = −

√
1 − G2 explicitly. So

~ is a function of G near ( 35 ,
−4
5 ). We could then differentiation this formula to find what we wanted.

Alternatively, rather than finding an explicit representation of ~ as a function of G locally, we
could utilise the Chain Rule. That is, for the equation G2 + ~2 = 1, consider G as a variable and ~
as a function of G . Then, differentiating with respect to G , we have

2G + 2~ m~
mG

= 0.

Therefore, at the point ( 35 ,
−4
5 ) we have

2( 3
5
) + 2( −4

5
) m~
mG

= 0,

which simplifies to m~

mG
|( 35 , −45 ) =

3
4 .
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Remark. Unlike at the point ( 35 ,
−4
5 ), near the point (−1, 0), ~ is not a function of G locally. In

fact, when we put (−1, 0) into our implicit formula for m~

mG
where we assumed ~ was locally a

function of G , we end up with the nonsense −2 + 0 = 0.
Instead, G is locally a function of ~ at the point (−1, 0), and so we have the implicit equation

2G mG
m~
+ 2~ = 0, which results in mG

m~
|(−1,0) = 0.

Example 107. Let ( = {G3 + I2 +~4GI + I cos~ = 0}. Given that I can be expressed locally about
(0, 0, 0) as a function of G and ~, find mI

mG
and mI

m~
at (0, 0, 0).

Differentiating our implicit formula for I as a function of G and ~, we find

3G2 + 2I mI
mG
+ ~4GI (I + G mI

mG
) + mI

mG
cos~ = 0

2I
mI

m~
+ 4GI + ~4GI (G mI

m~
) + mI

m~
cos~ − I sin~ = 0

Setting G = ~ = I = 0, we find mI
mG
|(0,0,0) = 0, and mI

m~
|(0,0,0) = −1.
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Week 5

5.1 Extremal Points

Definition 5.24. Let 5 : � ⊆ R= → R, 0 ∈ �.

(i) 5 is said to have a global maximum at 0 if

5 (0) ≥ 5 (G), ∀G ∈ �.

(ii) 5 is said to have a local maximum at 0 if

5 (0) ≥ 5 (G), for any G ∈ � near 0.

More precisely, ∃X > 0 such that 5 (0) ≥ 5 (G) for any G ∈ � ∩ �X (0).

We make the exact same definitions for minimum values also.

Example 108. Image of function from lectures to be inserted here

This function has a

• Global maximum at 4,

• Global minimum at 1,

• Local maximum at 2 and 4,

• Local minimum at 1, 3 and 5.

The following examples show that global extrema need not exist.

Example 109. 5 (G) = 4G for G ∈ R. Since limG→∞ 5 (G) = ∞, there is no global maximum. Also,
as limG→−∞ 5 (G) = 0 and 5 (G) > 0 for any G ∈ R, then there is also no global minimum.

The domain R is not bounded.

Example 110. 5 (G) = G for G ∈ (−1, 1]. There is a global maximum of 1, but 5 has no global
minimum.

The domain (−1, 1] is not closed.

60



Example 111. 5 : [−1, 1] → R, defined piecewise by

5 (G) =


1 − G : G ∈ (0, 1]
0 : G = 0
−1 − G : G ∈ [−1, 0)

.

5 gets arbitrarily close to ±1 but never reaches them, and so 5 has neither a global maximum or a
global minimum.

The function 5 is not continuous.

The following theorem provides a sufficient condition, but not a necessary condition, for the
existence of global extrema.

Theorem 112 (Extreme Value Theorem). Let � ⊆ R= be closed and bounded and 5 : �→ R be
continuous. Then 5 has a global maximum and minimum.

Remark. Closed and bounded subsets � ⊆ R= are also known as compact subsets.
Although there is a more general definition of compact subsets in any topological space, in

Euclidean space being compact is equivalent to being closed and bounded. For the interested
reader, look up the Heine-Borel theorem.

Although we may use the Extreme Value Theorem (EVT) to verify the existence of global
extrema, the question now turns to how one may locate them.

Example 113. Image of function from lectures to be inserted here

Firstly, since � = [0, 4] is compact and 5 is continuous, by the EVT we know that 5 has a
global maxima and minima.

Recall from single variable calculus, extrema can only occur at points G where

(i) 5 ′(G) = 0 (i.e at G = 1, 2)

(ii) 5 ′(G) DNE (i.e at G = 3)

(iii) G ∈ m� (i.e at G = 0, 4)

Points in cases (i) and (ii) are known as critical points and in case (iii) as boundary points.
Comparing the value of 5 at these five points, we find that 5 has a global max at 4 and a global

min at 3.

We generalise the definition of a critical point to multi-variable functions.

Definition 5.25. 5 : �→ R, 0 ∈ Int(�). Then 0 is called a critical point of 5 if either:

• ∇5 (0) DNE;

• ∇5 (0) = 0.
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Theorem 114 (First derivative test). If 5 : � ⊆ R= → R attains a local extremum at 0 ∈ Int(�),
then 0 is a critical point of 5 .

Proof. Since 0 ∈ Int(�), we can find X > 0 such that 0 + CE ∈ � for any |C | < X and any unit
vector E ∈ R=.

Without loss of generality, we may assume that ∇5 (0) exists. Then, for any 8 ∈ {1, . . . , =}
consider the function

68 (C) = 5 (0 + C48), C ∈ (−X, X).

By the definition of 68 , we find that 68 has a local extremum at 0 and 6′8 (0) =
m5

mG8
(0) exists.

Therefore, by the first derivative test for single varaible functions

∇5 (0) =
(
6′1(0), . . . , 6′= (0)

)
= (0, . . . , 0) ∈ R= . �

Finding Extrema

We employ the following strategy for find extremal points:

1. Find critical points of our function in the interior Int(�).

2. Find the max/min of our function on the boundary m�.

3. Compare these values.

Example 115. 5 (G,~) = G2 + 2~2 − G + 3, defined for (G,~) ∈ � = �1(0).

Firstly, we note that � is compact and since 5 is a polynomial it is continuous, so by the
EVT 5 has global extrema in �.

1. ∇5 (G,~) = (2G − 1, 4~) exists everywhere in Int(�) = �1(0). Also, ∇5 (G,~) = 0 iff
(G,~) = ( 12 , 0) ∈ �1(0), with 5 ( 12 , 0) =

11
4 .

2. We may parameterise m� by \ ↦→ (cos\, sin\ ), for \ ∈ [0, 2c]. Plugging this into our
function 5 we find that

5 (cos\, sin\ ) = cos2 \ + 2 sin2 \ − cos\ + 3
= cos2 \ + 2(1 − cos2 \ ) − cos\ + 3
= 5 − cos\ − cos2 \

=
21
4
− (cos\ + 1

2
)2.

From this, we can easily read off that the

• maximum value on m� is 21
4 when cos\ = − 1

2 , i.e at the points (− 1
2 ,±

√
3
2 ).

• minimum value of m� is 21
4 −

3
2
2
= 3 when cos\ = 1, i.e at the point (1, 0).

3. Comparing our critial points and our boundary points, we find that
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• 5 ( 12 , 0) =
11
4 is the global min,

• 5 (− 1
2 ,±

√
3
2 ) =

21
4 is the global max.

Example 116. 5 (G,~) =
√
G2 + ~4 − ~, defined for (G,~) ∈ � = {−1 ≤ G,~ ≤ 1}.

� compact and 5 continuous implies that 5 has global extrema by the EVT.

1. Consider 5 restricted to Int(�) = {−1 < G,~ < 1}. At the origin we find that m5
mG
(0, 0) =

limℎ→0
|ℎ |−0
ℎ

DNE. Away from the origin 5 is differentiable with

∇5 (G,~) =
(

G√
G2 + ~4

,
2~3√
G2 + ~4

− 1
)
,

and so ∇5 = 0 iff (G,~) = (0, 12 ). Thus, 5 has two critical points (0, 0) and (0, 12 ) in Int(�),
and 5 (0, 0) = 0, 5 (0, 12 ) = −

1
4 .

2. We split m� into three components:

• If ~ = 1, then 5 (G, 1) =
√
G2 + 1 − 1, which implies 5 (G, 1) ∈ [0,

√
2 − 1].

• If ~ = −1, then 5 (G,−1) =
√
G2 + 1 + 1, which implies 5 (G,−1) ∈ [2,

√
2 + 1].

• If G = ±1, then 5 (±1, ~) =
√
1 + ~4 − ~, which implies 5 (±1, ~) ∈ (0,

√
2 + 1].

Therefore, on m�, the minimum value is 0 at (0, 1), and the maximum value is
√
2 + 1 at

(±1,−1).

3. 5 (0, 12 ) = −
1
4 is a global minimum, and 5 (±1,−1) = 1 +

√
2 is a global maximum.

Unbounded Regions

In practice, we may wish to find extremal points for functions defined on unbounded regions.
Although we can’t directly apply the EVT, in many cases we may still use it on a suitably chosen
compact subset our unbounded region.

Example 117. 5 (G,~) = G2 + ~2 − 4G + 6~ + 7 for all (G,~) ∈ R2. Firstly, we observe that
lim(G,~)→∞ 5 (G,~) = ∞, and so 5 has no global maximum on R2. As we shall see, 5 will have a
global minimum.

The gradient ∇5 (G,~) = (2G − 4, 2~ + 6) exists on all of R2, with ∇5 = 0 iff (G,~) = (2,−3).
That is, there is only one critical point in R2, with 5 (2,−3) = −6.

We want to chose a � ⊆ R2 compact such that (2,−3) ∈ Int(�), but also so that outside of
Int(�), 5 is larger than −6.
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Note that

5 (G,~) = G2 + ~2 − 4G − 6~ + 7
≥ G2 + ~2 − 4(

√
G2 + ~2) − 6(

√
G2 + ~2) + 7

≥ (
√
G2 + ~2) ((

√
G2 + ~2 − 10) + 7,

and so if
√
G2 + ~2 ≥ 10, 5 (G,~) ≥ 7. Therefore, we chose � = �10(0).

By the EVT, 5 restricted to � has a global minimum in �. Since there is only one critical point
(2,−3) in Int(�), and 5 ≥ 7 > −6 on m�, it follows that 5 has a minimum at (2,−3) in �. Finally,
since 5 (G,~) ≥ 7 > 5 (2,−3) for any (G,~) ∉ �, 5 does indeed have a global minimum at (2,−3).

Example 118. Suppose you are tasked with constructing a box (without a lid) that has a volume
of 16<3. The material used to construct the base costs $2/<2, and the material for the sides costs
$0.5/<2.

Q: What is the cheapest you can build such a box?

Suppose G,~ > 0 denote the length (in<) of the sides of the base. It follows that the height
of the box must then by 16

G~
. With these dimensions, the cost of the box is given by the function

� : Ω = {G,~ > 0} → R,

� (G,~) = 2G~ + 1
2
(2 16
G~
~ + 2 16

G~
G)

= 2G~ + 16
G
+ 16
~
.

We have formulated our problem as finding a global minimum of the function� on the unbounded
domain Ω.

1. ∇� (G,~) = (2~ − 16
G2
, 2G − 16

~2
) exists everywhere in Ω, and ∇� = 0 iff (G,~) = (2, 2). That

is, � has one critical point (2, 2) ∈ Ω, with � (2, 2) = 24.

2. We now find a compact region � ⊆ Ω such that (2, 2) ∈ Int(�) and � > 24 outside of
Int(�). We choose � = [ 110 , 1000] × [

1
10 , 1000].

If G ≤ 1
10 or ~ ≤ 1

10 , then � (G,~) > 16
G
+ 16

~
≥ 160. Alternatively, if either G ≥ 1

10 and
~ ≥ 1000, or G ≥ 1000 and ~ ≥ 1

10 , then G~ ≥ 100 and � (G,~) > 2G~ ≥ 200.

3. Since � is compact and � is continuous, by the EVT, � has a global minimum in �. Since
(2, 2) ∈ Int(�), and � > 24 = � (2, 2) on m�, it follows that � has a minimum at (2, 2) in �.
Finally, since � > 24 at every point in Ω \�, � has a global minimum at (2, 2) in Ω, and
the cheapest price to construct the box is $24.
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5.2 Taylor Series

Let 6 : R→ R be a function of one-variable. The Taylor expansion of 6(C) at C = 0 up to order
: ∈ N is

6(C) = 6(0) + 6′(0)C + 1
2!
6′′(0)C2 + · · · + 1

:!
6 (:) (0)C: + Y: (C), (5.18)

where Y: is the remainder and satisfies limC→0
Y: (C )
C:

= 0. We want a similar formula for a multi-
variable function.

Suppose 5 : R= → R and G, 0 ∈ R=. Restricting 5 to the line ! = {0 + C (G − 0) : C ∈ R} we
have the single variable function 6(C) = 5 (0 + C (G − 0)). Applying (5.18) to this function 6, we
find that

5 (G) = 6(1) = 6(0) + 6′(0) + 1
2!
6′′(0) + · · · + 1

:!
6 (:) (0) + Y: (1) .

We now find expressions for derivatives of 6 at C = 0 in terms of 5 :

• 6(0) = 5 (0),

• By the Chain Rule, 6′(C) = ∇5 (0 + C (G − 0)) · (G − 0), and so

6′(0) =
=∑
8=1

m5

mG8
(0) (G8 − 08).

• Again by the Chain Rule,

6′′(C) =
=∑
8=1

3

3C

(
m5

mG8
(0 + C (G − 0))

)
(G8−08) =

=∑
8=1

=∑
9=1

m2 5

mG 9 mG8
(0+C (G−0)) (G 9−0 9 ) (G8−08),

and so

6′′(0) =
=∑

8, 9=1

m2 5

mG 9 mG8
(0) (G 9 − 0 9 ) (G8 − 08).

• Repeating, we find that for any : ∈ N,

6 (:) (0) =
=∑

81,...,8:=1

m: 5

mG81 · · · mG8:
(0) (G81 − 081) · · · (G8: − 08: ).

Definition 5.26. Let Ω ⊆ R= open, 5 : Ω → R be a �: function, for some : ∈ N. Then, for any
0 ∈ Ω, define the :Cℎ-order Taylor polynomial of 5 at 0 to be

%: (G) = 5 (0) +
=∑
8=1

m5

mG8
(0) (G8 − 08) + · · · +

1
:!

=∑
81,...,8:=1

m: 5

mG81 · · · mG8:
(0) (G81 − 081) · · · (G8: − 08: ) .
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Theorem 119 (Taylor’s Theorem). Let Ω ⊆ R= open, 5 : Ω → R be a �: function, for some
: ∈ N. Then, for any G, 0 ∈ Ω, we have

5 (G) = %: (G) + Y: (G),

with limG→0
Y: (G)
‖G−0 ‖: = 0.

Remark. • %1(G) is the best affine approximation of 5 at 0, with Y1(G) denoting the usual
error function.

• The partial derivatives of %: and 5 agree up to order : at 0.

Example 120. Suppose 5 (G,~) is a �2 function, then its 2=3 -order Taylor polynomial at (G0, ~0)
is given by

%2(G,~) = 5 (G0, ~0) + 5G (G0, ~0) (G − G0) + 5~ (G0, ~0) (~ − ~0)

+ 1
2

©«5GG (G0, ~0) (G − G0)
2 + 25G~ (G0, ~0) (G − G0) (~ − ~0)︸                              ︷︷                              ︸

Clairaut’s theorem

+5~~ (G0, ~0) (~ − ~0)2
ª®®®¬ .

Example 121. 5 (G,~) = 4G cos~. Then the partial derivatives of 5 are

5G = 4G cos~, 5~ = −4G sin~,

5GG = 4G cos~, 5G~ = 5~G = −4G sin~, 5~~ = −4G cos~.

At (0, 0), we have

5 = 5G = 5GG = 1, 5~ = 5G~ = 5~G = 0, 5~~ = −1,

and therefore at (0, 0), the 2=3 -order Taylor polynomial is

%2(G,~) = 1 + G + G
2

2
− ~

2

2
.

Taking more partial derivatives of 5 , we see that

5GGG = 4G cos~, 5GG~ = 5G~G = 5~GG = −4G sin~, 5G~~ = 5~G~ = 5~~G = −4G cos~, 5~~~ = 4G sin~,

and so at (0, 0), we have

5GGG = 1, 5GG~ = 5G~G = 5~GG = 5~~~ = 0, 5G~~ = 5~G~ = 5~~G = −1,

and therefore at (0, 0), the 3A3 -order Taylor polynomial is

%3(G,~) = %2(G,~) +
6 (3) (0)

6!

= 1 + G + G
2

2
− ~

2

2
+ G

3

6
− G~

2

2
.

66



Hessian Matrix

Definition 5.27. Let Ω ⊆ R= open, 5 : Ω → R a �2 function. The Hessian matrix of 5 at 0 ∈ Ω
is

� 5 (0) :=
©«
5G1G1 (0) · · · 5G1G= (0)

...
. . .

...

5G=G1 (0) · · · 5G=G= (0)

ª®®¬ .
Remark. By Clairaut’s theorem, the Hessian matrix is a symmetric = × = matrix.

Using � 5 (0), we can rewrite the 2=3 -order Taylor polynomial:

%2(G) = 5 (0)︸︷︷︸
1×1

+∇5 (0)︸︷︷︸
1×=

(G − 0)︸  ︷︷  ︸
=×1

+1
2
(G − 0))︸    ︷︷    ︸

1×=

� 5 (0)︸ ︷︷ ︸
=×=

(G − 0)︸  ︷︷  ︸
=×1

.

Example 122. Considering the same function as before 5 (G,~) = 4G cos~, we had

5 (0, 0) = 1, ∇5 (0, 0) = (1, 0), � 5 (0, 0) =
(
1 0
0 −1

)
,

and

%2(G,~) = 1 + (1, 0) ·
(
G

~

)
+ 1
2
(G,~) ·

(
1 0
0 −1

)
·
(
G

~

)
Example 123. Find %2(G,~) at the point (1, 0) for the function 6(G,~) = logG

1−~ .

6(1, 0) = 0

∇6 =

(
1

G (1 − ~) ,
logG
(1 − ~)2

)
, ∇6(1, 0) = (1, 0)

�6 =

( −1
G2 (1−~)

1
G (1−~)2

1
G (1−~)2

2 logG
(1−~)3

)
, �6(1, 0) =

(
−1 1
1 0

)
.

Therefore,

%2(G,~) = 6(1, 0) + ∇6(1, 0)
(
G − 1
~

)
+ 1
2
(G − 1, ~)�6(1, 0)

(
G − 1
~

)
= 0 + ∇(1, 0)

(
G − 1
~

)
+ 1
2
(G − 1, ~)

(
−1 1
1 0

) (
G − 1
~

)
= (G − 1) − 1

2
(G − 1)2 + (G − 1)~.
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5.3 Second Derivative Test

Suppose 5 : Ω ⊆ R= → R is a �2 function, and 0 ∈ Ω is a critical point of 5 . Then ∇5 (0) = 0.
For G near 0, we have that 5 (G) ≈ %2(G). That is,

5 (G) − 5 (0) ≈ %2(G) − 5 (0)

= ∇5 (0)︸︷︷︸
=0

(G − 0) + 1
2
(G − 0))� 5 (0) (G − 0)

=
1
2
(G − 0))� 5 (0) (G − 0).

Therefore, the Hessian matrix can potentially determine whether 0 is a local extremum.

For = = 1, 1
2 (G − 0)

)� 5 (0) (G − 0) = 1
2 5
′′(0) (G − 0)2, and we see that{

5 ′′(0) > 0 =⇒ local min at 0,
5 ′′(0) < 0 =⇒ local max at 0.

For = = 2, lettting 0 = (G0, ~0), we have

1
2
(G − 0))� 5 (0) (G − 0) = 1

2
(G − G0, ~ − ~0)

(
5GG (G0, ~0) 5G~ (G0, ~0)
5~G (G0, ~0) 5~~ (G0, ~0)

) (
G − G0
~ − ~0

)
.

To understand the nature of such critical points, we study quadratic forms (in this case of two
variables)

@(G,~) = (G,~)
(
� �

� �

) (
G

~

)
= �G2 + 2�G~ +�~2.

Q: Does @(G,~) have a sign?

Example 124. If @(G,~) = 2G~, we could rewrite this as

@(G,~) = 1
2
(G + ~)2 − 1

2
(G − ~)2.

What is the sign of @(G,~) away from the origin (0, 0)?

• Along G + ~ = 0, @(G,−G) = −2G2 < 0.

• Along G − ~ = 0, @(G, G) = 2G2 > 0.

Therefore, @ is indefinite. Clearly, the origin is a critical point of @(G,~), but neither a local
minimum or a local maximum. We call such a point a saddle point.

Example 125. If @(G,~) = 17G2 − 12G~ + 8~2, we could again complete the square

@(G,~) = 17(G − 6
17
~)2 + 100

17
~2. (5.19)

In this form, it is then clear that @(G,~) > 0 = @(0, 0) for any (G,~) ≠ (0, 0), and the critical point
at the origin is a local (and global) minimum of @.
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Remark. An expression such as (5.19) is known as a diagonalisation of @, and is not unique. For
example, we could also write our quadratic form @ as

@(G,~) = 5
(
G + 2~
√
5

)2
+ 20

(
2G − ~
√
5

)2
.

Different diagonalisations are related to one another by means of an orthogonal change of
coordinates.

Example 126. Consider the quadratic form @(G,~, I) = G~ + ~I + GI of three variables. By
completing the square twice, we rewrite @ in the form

@(G,~, I) = G~ + ~I + GI

=
1
4
(G + ~)2 − 1

4
(G − ~)2 + I (G + ~)

=
1
4
(G + ~ + 2I)2 − 1

4
(G − ~)2 − I2.

• Along the line G − ~ = I = 0, @(G, G, 0) = G2 > 0.

• On the plane G + ~ + 2I = 0, @(G,~,− 1
2 (G + ~)) = −

1
4 (G − ~)

2 − 1
4 (G + ~)

2 < 0.

Therefore, the critical point (0, 0, 0) is a saddle point.

Definition 5.28. Let � be an = × = symmetric matrix. Then � is said to be

1. positive definite if G)�G > 0 for any G ∈ R= \ {0};

2. negative definite if G)�G < 0 for any G ∈ R= \ {0};

3. indefinite if G)�G > 0 and ~)�~ < 0, for some G,~ ∈ R=.

Remark. Not every symmetric = × = matrix fits into one of these three cases.

Example 127. The matrix � =

(
1 0
0 4

)
is positive definite, � =

(
−1 0
0 −4

)
is negative definite,

� =

(
−1 0
0 4

)
is indefinite, and � =

(
1 0
0 0

)
is neither positive definite, negative definite, or

indefinite.

The following theorem, known as the Second Derivative Test, determine the nature of a critical
point via the definiteness of the Hessian matrix at that point.

Theorem 128 (Second Derivative Test). If Ω ⊆ R= is open, 5 : Ω → R is a �2 function, and
0 ∈ Ω is a critical point of 5 . Then � 5 (0) is

(i) positive definite =⇒ 0 is a local minimum;

(ii) negative definite =⇒ 0 is a local maximum;
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(iii) indefinite =⇒ 0 is a saddle point.

Proof. Without loss of generality, we may assume that 0 = 0. By Taylor’s theorem, since
∇5 (0) = 0, we have that

5 (G) − 5 (0) = 1
2
G)� 5 (0)G + Y (G), ∀G ∈ Ω,

with limG→0
Y (G)
‖G ‖2 = 0. Next, consider the map � : m�1(0) ⊆ R= → R, defined by

� (G) := 1
2
G)� 5 (0)G, ∀ unit vectors G ∈ m�1(0) .

If � 5 (0) is positive definitie, then � > 0. Moreover, since m�1(0) is compact and � is continuous
(� is a polynomial of degree 2), by the EVT this map has a global minimum. In particular, there
exists a unit vector G0 ∈ R= such that

� (G) ≥ � (G0) > 0, ∀G ∈ m�1(0).

Setting n0 := � (G0) > 0, we find that for any non-zero vector G ∈ R=

1
2
G)� 5 (0)G =

1
2

(
G

‖G ‖

))
� 5 (0)

(
G

‖G ‖

)
‖G ‖2 ≥ n0‖G ‖2.

Plugging this choice of n0 into the definition of limG→0
Y (G)
‖G ‖2 = 0, we find X > 0 such that, if G ∈ Ω

and 0 < ‖G ‖ < X , then |Y (G) |‖G ‖2 < n0. In particular, at any point G ∈ Ω with 0 < ‖G ‖ < X ,

5 (G) − 5 (0) = 1
2
G)� 5 (0)G + Y (G)

≥
����12G)� 5 (0)G ���� − |Y (G) |
≥ n0‖G ‖2 − |Y (G) |
> n0‖G ‖2 − n0‖G ‖2 = 0,

and hence 0 is a local minimum of 5 . The same argument applies if � 5 (0) is negative definite.
Finally, in the case that � 5 (0) is indefinite, we find unit vectors G,~ ∈ R= such that

U :=
1
2
G)� 5 (0)G > 0, V :=

1
2
~)� 5 (0)~ < 0.

Consider the sequence of vectors G 9 := G
9
∈ R=. Note that G 9 → 0 as 9 →∞. Moreover,

lim
9→∞

[
92(5 (G 9 ) − 5 (0))

]
= lim
9→∞

92
[
1
2
G)9 � 5 (0)G 9 + Y (G 9 )

]
=
1
2
G)� 5 (0)G + lim

9→∞

Y (G 9 )
‖G 9 ‖2

= U + 0 = U > 0.

Therefore, for 9 sufficiently large, 5 (G 9 ) > 5 (0). Repeating the argument for the sequence ~ 9 =
~

9
,

we find that for 9 sufficiently large, 5 (~ 9 ) < 5 (0). Thus we conclude that 0 is a saddle point. �
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In practise, how do we determine if the Hessian matrix is definite?

Lemma 129. Let " =

(
� �

� �

)
be a 2 × 2 matrix. Then

• " is positive definite ⇐⇒ � > 0, and det(") > 0;

• " is negative definite ⇐⇒ � < 0, and det(") > 0;

• " is indefinite ⇐⇒ det(") < 0.

Proof. Let @(G,~) = �G2 + 2�G~ +�~2.

(i) We begin with the case that � ≠ 0:

�@(G,~) = �2G2 + 2��G~ +��~2 = (�G + �~)2 + (�� − �2)︸      ︷︷      ︸
det"

~2.

From this we conclude that �@ > 0 if det(") > 0, and �@ changes sign if det(") < 0.
Dividing by � gives us that

• @ > 0 ⇐⇒ � > 0, det(") > 0;

• @ < 0 ⇐⇒ � < 0, det(") > 0;

• @ changes sign ⇐⇒ det(") < 0.

(ii) The case � = 0:
@(G,~) = ~ (2�G +�~),

is clearly neither positive definite nor negative definite. @ is indefinite ⇐⇒ � ≠ 0 ⇐⇒
det(") = −�2 < 0. �

We use this Lemma to update the Second Derivative Test in the case = = 2.

Theorem 130. If Ω ⊆ R2 is open, 5 : Ω → R is a �2 function, and 0 ∈ Ω is a critical point of 5 .
Then

(i) 5GG 5~~ − 5 2G~ > 0, 5GG > 0 at 0 =⇒ 0 is a local minimum;

(ii) 5GG 5~~ − 5 2G~ > 0, 5GG < 0 at 0 =⇒ 0 is a local maximum;

(iii) 5GG 5~~ − 5 2G~ < 0 at 0 =⇒ 0 is a saddle point;

(iv) 5GG 5~~ − 5 2G~ = 0 at 0 =⇒ inconclusive.

Remark. Case (iv) could be a local max/min or a saddle point (see Example 133).

Example 131. Consider the function 5 : R2 → R, 5 (G,~) = 3G2 − 10G~ + 3~2 + 2G + 2~ + 3. This
is a smooth function with

∇5 (G,~) = (6G − 10~ + 2,−10G + 6~ + 2),
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and so the only critical point of 5 is at (G,~) = ( 12 ,
1
2 ). The Hessian matrix of 5 is

� 5 (G,~) =
(
5GG 5G~
5~G 5~~

)
=

(
6 −10
−10 6

)
.

Note that (at the critical point)

5GG 5~~ − 5 2G~ = 62 − 102 = −64 < 0,

and by the Second Derivative Test, ( 12 ,
1
2 ) is a saddle point.

Example 132. Consider the function 5 : R2 → R, 5 (G,~) = 3G − G3 − 3G~2. This is a smooth
function with

∇5 (G,~) = (3 − 3G2 − 3~2,−6G~),

and so the critical points of 5 are when

G~ = 0, G2 + ~2 = 1 ⇐⇒ (G,~) = (0,±1), (±1, 0) .

The Hessian matrix of 5 is

� 5 (G,~) =
(
−6G −6~
−6~ −6G

)
.

Therefore, at each critical point we deduce that:

• � 5 (1, 0) =
(
−6 0
0 −6

)
, with det(� 5 (1, 0)) = 36 > 0 and 5GG = −6 < 0. So (1, 0) is a local

maximum.

• � 5 (−1, 0) =
(
6 0
0 6

)
, with det(� 5 (−1, 0)) = 36 > 0 and 5GG = 6 > 0. So (−1, 0) is a local

minimum.

• � 5 (0, 1) =
(
0 −6
−6 0

)
, with det(� 5 (0, 1)) = −36 < 0. So (0, 1) is a saddle point.

• � 5 (0,−1) =
(
0 6
6 0

)
, with det(� 5 (0,−1)) = −36 < 0. So (0,−1) is a saddle point.

Example 133. Consider the three functions

5 (G,~) = G2 + ~4, 6(G,~) = G2 − ~4, ℎ(G,~) = −G2 − ~4.

Since
∇5 (G,~) = (2G, 4~3), ∇6(G,~) = (2G,−4~3), ∇ℎ(G,~) = (−2G,−4~3),

all three functions have a single critical point at (0, 0). Since

� 5 (G,~) =
(
2 0
0 12~2

)
, �6(G,~) =

(
2 0
0 −12~2

)
, �ℎ(G,~) =

(
−2 0
0 −12~2

)
,
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and

� 5 (0, 0) =
(
2 0
0 0

)
, �6(0, 0) =

(
2 0
0 0

)
, �ℎ(0, 0) =

(
−2 0
0 0

)
,

all three Hessian matrices have zero determinant at the origin, and the Second Derivative Test is
inconclusive. However at (0, 0), we see that 5 has a local minimum, 6 has a saddle point, and ℎ
has a local maximum.

Let us return to the general case 5 : Ω ⊆ R= → R is a �2 function, 0 ∈ Ω and 0 is a critical
point of 5 . Then

� 5 (0) =
©«
511 · · · 51=
...

. . .
...

5=1 · · · 5==

ª®®¬ .
Since 5 is �2, � 5 (0) is symmetric, and thus by a theorem from Linear Algebra, there exists an
orthogonal matrix % such that

%)� 5 (0)% =
©«
_1 0

. . .

0 _=

ª®®¬ ,
is a diagonal matrix, where _1, . . . , _= ∈ R are the eigenvalues of � 5 (0).

(Recall, a matrix % is called orthogonal if %)% = �=.)

Note that, the diagonal matrix %)� 5 (0)% is

• positive definite ⇐⇒ _8 > 0 for any 8 ∈ {1, . . . , =};

• negative definite ⇐⇒ _8 < 0 for any 8 ∈ {1, . . . , =};

• indefinite ⇐⇒ _8 < 0 < _ 9 for some 8, 9 ∈ {1, . . . , =}.

Since % is invertible (%−1 = %) ), we see that the previous criteria also apply to the matrix
� 5 (0).

Alternatively, we can also check the definiteness of the Hessian matrix by looking at submatri-
ces. That is, let �: denote the : × : submatrix

�: =
©«
511 · · · 51:
...

. . .
...

5:1 · · · 5::

ª®®¬ , for : ∈ {1, . . . , =}.

Then, � 5 (0) is

• positive definite ⇐⇒ det(�: ) > 0, for : ∈ {1, . . . , =};

• negative definite ⇐⇒ sign(det(�: )) = (−1): , for : ∈ {1, . . . , =}.

For = = 2,
det(�1) = 5GG , det(�2) = 5GG 5~~ − 5 2G~,

and we recover the = = 2 version of the Second Derivative Test stated earlier.
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Week 6

6.1 Lagrange Multipliers

To motivate the next section, we consider the following question:

what if we want extrema subject to constraints?

Theorem 134. Let 5 , 6 : Ω ⊆ R= → R be �1 functions, 2 ∈ R, and

( = 6−1(2) = {G ∈ Ω : 6(G) = 2}.

If 0 is a local extremum of 5 on ( , and ∇6(0) ≠ 0, then ∇5 (0) = _∇6(0) for some _ ∈ R.

Remark. Let � : Ω × R→ R denote the function � (G, _) = 5 (G) − _(6(G) − 2). Then

∇� (G, _) = (∇5 (G) − _∇6(G), 2 − 6(G)) .

Therefore, critical points of 5 under the constraint 6 ≡ 2 are equivalent to unconstrained critical
points of � .

Example 135. Suppose we want to find the point on the parabola 4~ = G2 closest to the point
(1, 2).

We may rephrase this by introducing the squared distance function 5 (G,~) = (G −1)2 + (~−2)2,
and the constraining function 6(G,~) = G2 − 4~. Then our question becomes find the minimum of
5 on the level set 6 = 0.

Since 5 , 6 are polynomials on R2 they are certainly �1 on R2 with

∇5 = (2(G − 1), 2(~ − 2)), ∇6 = (2G,−4) ≠ 0.

Thus, if (G,~) is a local extremum of 5 on 6 = 0, then{
∇5 (G,~) = _∇6(G,~) : for some _ ∈ R
6(G,~) = 0,

which is equivalent to the system of equations

2(G − 1) = 2_G, 2(~ − 2) = −4_, G2 = 4~.

Solving this system, we find a unique solution (G,~) = (2, 1).
Geometrically, 5 must have a minimum on 6 = 0. By our reasoning, (2, 1) is the only possible

candidate, and thus 5 has a minimum at (2, 1) on the level set 6 ≡ 0. Since 5 (2, 1) = 2, in the
original language of the question, the point (2, 1) is the point lying on the parabola 4~ = G2 lying
closest to (1, 2), with a distance of

√
2 between the points.
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Idea of Proof. Suppose 5 has an extremum on ( at 0. Let W : (n, n) → ( be a curve on ( such that
W (0) = 0. Since 5 ◦ W has an extremum at 0,

0 = (5 ◦ W) ′(0) = ∇5 (0) · W ′(0),

and so ∇5 (0) ⊥ ( at 0. Since ∇6(0) is also normal to ( at 0, we find that ∇5 (0) and ∇6(0) are
parallel. �

Example 136. Find the point on the parabola G2 = 4~ closest to the point (2, 5). As before, we
set up the problem in the following way:

Minimise 5 (G,~) = (G − 2)2 + (~ − 5)2 with the constraint 6(G,~) = G2 − 4~ = 0.

As in the previous example, 5 , 6 are �1 functions with

∇5 = (2(G − 2), 2(~ − 5)), ∇6 = (2G,−4) ≠ 0.

Thus, if (G,~) is a local extremum of 5 on 6 = 0, then{
∇5 (G,~) = _∇6(G,~) : for some _ ∈ R
6(G,~) = 0,

which is equivalent to the system of equations

2(G − 2) = 2_G, 2(~ − 5) = −4_, G2 = 4~.

Solving this system, we now find two solutions (G,~) = (−2, 1), (4, 4).
Again, geometrically, 5 must have a minimum on 6 = 0. Since 5 (−2, 1) = 32 and 5 (4, 4) = 5,

5 has a minimum at (4, 4) on the level set 6 ≡ 0, and the point (4, 4) is the point lying on the
parabola 4~ = G2 lying closest to (2, 5).

Example 137. Maximise the function 5 (G,~) = G~2 on the ellipse 6(G,~) = G2 + 4~2 = 4.

Since 5 is continuous and the level set {6 = 4} is compact, by the EVT 5 has a global maximum
on the ellipse. Since 5 , 6 are �1 functions with

∇5 = (~2, 2G~), ∇6 = (2G, 8~),

and ∇6 ≠ 0 on the ellipse, we may use the theory of Lagrange Multipliers to conclude that at such
a maximum {

∇5 (G,~) = _∇6(G,~) : for some _ ∈ R
6(G,~) = 4.

This is equivalent to the system of equations

~2 = 2_G, 2G~ = 8_~, G2 + 4~2 = 4.
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If ~ = 0, then G = ±2. Otherwise ~ ≠ 0, and from our equations we deduce that

2G~
~

=
8_~
2_G

=⇒ G2 = 2~2,

and hence (G,~) = (±
√

4
3 ,±

√
2
3 ). Comparing our function at these six points, we find that

5 (±2, 0) = 0, 5

(√
4
3
,±

√
2
3

)
=

4
3
√
3︸                       ︷︷                       ︸

Maximum

, 5

(
−
√

4
3
,±

√
2
3

)
= − 4

3
√
3
.

For problems in finding unconstrained extremal points for functions 5 : �→ R, the theory of
Lagrange Multipliers can be utilised to determine the extremal points of 5 on the boundary m�.

Example 138. In Example 115, we found that 5 (G,~) = G2 + 2~2 − G + 3 has the single critical
point ( 12 , 0) ∈ Int(�) = �1(0), with 5 ( 12 , 0) =

11
4 . Instead of parameterising the boundary m�, we

instead define 6(G,~) = G2 + ~2 and note that m� = {6 = 1}. Since ∇6 = (2G, 2~) ≠ 0 on m�, we
may apply the theory of Lagrange Multipliers to deduce that at an extrema of 5 restricted to m�,
we must satisfy the system of equations{

∇5 (G,~) = _∇6(G,~) : for some _ ∈ R
6(G,~) = 1,

which is equivalent to
2G − 1 = 2_G, 4~ = 2_~, G2 + ~2 = 1.

From the second equation, we deduce that either ~ = 0, in which case G = ±1, or _ = 2, in which
case (G,~) = (− 1

2 ,±
√
3
2 ). Comparing 5 at these points

5 ( 1
2
, 0) = 11

4︸          ︷︷          ︸
Minimum

, 5 (1, 0) = 3, 5 (−1, 0) = 5, , 5

(
−1
2
,±
√
3
2

)
=
21
4︸                  ︷︷                  ︸

Maximum

.

The following theorem generalises to the case of multiple constraints.

Theorem 139. Let 5 , 61, . . . , 6: : Ω ⊆ R= → R be �1 functions, 2 ∈ R: , and

( = {G ∈ Ω : 68 (G) = 28 , 8 ∈ {1, . . . , :}}.

If 0 is a local extremum of 5 on ( , and ∇61(0), . . . ,∇6: (0) are linearly independent, then

∇5 (0) =
:∑
8=1

_8∇68 (0), for some _ ∈ R: .

Idea of proof. Just like in the case of a single constraint, ∇5 (0) ⊥ ( at 0. That is, ∇5 (0) is
perpendicular to the (= − :)-dimensional tangent plane to ( at 0. Therefore, ∇5 (0) must belong
to the span of the normal vectors ∇61(0), . . . ,∇6: (0). �
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Example 140. Maximise the function 5 (G,~, I) = G2 + 2~2 − I2 on the line ! given by the two
equations 2G − ~ = 0, ~ + I = 0, assuming that we know 5 does admit a maximum on !.

Defining our constraints 61(G,~, I) = 2G − ~, 62(G,~, I) = ~ + I, we find that

∇5 = (2G, 2,−2I), ∇61 = (2,−1, 0), ∇62 = (0, 1, 1),

with ∇61(G,~, I),∇62(G,~, I) linearly independent at every point (G,~, I) ∈ R3. Therefore, we
may use the theory of Lagrange Multipliers to deduce that at the maximum of 5 on !, we satisfy
the system of equations

∇5 (G,~, I) = _1∇61(G,~, I) + _2∇62(G,~, I) : for some _1, _2 ∈ R
61(G,~, I) = 0,
62(G,~, I) = 0,

which is equivalent to the system of equations

2G = 2_1, 2 = −_1 + _2, −2I = _2, 2G − ~ = 0, ~ + I = 0.

This system has the unique solution (G,~, I) = ( 23 ,
4
3 ,−

4
3 ). Since a maximum exists, it must occur

at this point.

Example 141. Find the distance between the curve G~ = 1 and the line G + 4~ = 15
8 in R2.

Given a point (G,~) on the curve and a point (D, E) on the line, the distance squared between
them is given by the function 5 (G,~,D, E) = (G −D)2 + (~−E)2. The point (G,~) lying on the curve
can be expressed as the constraint 61(G,~,D, E) = G~ = 1, and similarly 62(G,~,D, E) = D + 4E + 15

8
is equivalent to (D, E) lying on the line. Therefore, we need to minimise 5 under the constraints
61 = 1, 62 = 15

8 . Since

∇5 = (2(G − D), 2(~ − E),−2(G − D),−2(~ − E))
∇61 = (~, G, 0, 0)
∇62 = (0, 0, 1, 4),

∇61,∇62 are linearly independent away from the origin (0, 0). But G~ = 1, so these vectors are
linearly independent when our constraints are satisfied, and hence by the theory of Lagrange
Multipliers, we know that at a minimum, we solve the system of equations

∇5 (G,~,D, E) = _1∇61(G,~,D, E) + _2∇62(G,~,D, E) : for some _1, _2 ∈ R
61(G,~,D, E) = 1,
62(G,~,D, E) = 15

8 .

This system of equations has two solutions: (2, 12 ,
15
8 , 0), and (−2,− 1

2 ,−
225
136 ,

15
17 ). Since

5 (2, 1
2
,
15
8
, 0) =

(
1
8

)2
+

(
1
2

)2
=
17
64
,

5 (−2,−1
2
,−225

136
,
15
17
) =

(
2 − 225

136

)2
︸       ︷︷       ︸

≥0

+
(
15
17
+ 1
2

)2
︸      ︷︷      ︸

≥1

≥ 1 >
17
64
,
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5 attains its minimum at (2, 12 ,
15
8 , 0), and the distance between the curve and the line is√

5 (2, 1
2
,
15
8
, 0) =

√
17
8
.

6.2 Implicit Function Theorem

We now move away from finding extremal points, and instead ask the following:

when can we ‘solve’ a constraint?

For example, if we have an implicit relation between two variables 6(G,~) = 2, when can we find,
locally, an explicit formula ~ = 5 (G) such that 6(G, 5 (G)) = 2?

Example 142. Consider the level set 6(G,~) = G2 − ~2 = 0. Near the point:

• (1, 1), we find ~ = G ;

• (−1, 1), we find ~ = −G ;

• (0, 0), ~ is not uniquely determined by G .

Example 143. Consider the constraint G2 + ~2 + I2 = 2 in R3, and consider the point (G,~, I) =
(0, 1, 1) satisfying the constraint. Can we locally solve I as a function of G and ~ near (0, 1, 1)?
What about G as a function of ~ and I?

Assuming we can solve I = I (G,~) near (0, 1, 1), and it is a differentiable function, by implicit
differentiation we find {

2G + 2I mI
mG

= 0
2~ + 2I mI

m~
= 0

,

which at (0, 1, 1) gives ( mI
mG
, mI
m~
) = (0,−1).

However, assuming we can solve G = G (~, I) near (0, 1, 1), and it is a differentiable function,
by implicit differentiation we find {

2G mG
m~
+ 2~ = 0

2G mG
mI
+ 2I = 0

,

which at (0, 1, 1) gives the contradiction 0 = 2. Therefore, we conclude that even though it may
be possible to express G = G (~, I) near (0, 1, 1), such a function cannot be differentiable.

Setting 6(G,~, I) = G2 + ~2 + I2 so that our constraint is 6 = 2, we find that at (0, 1, 1):

m6

mI
(0, 1, 1) = 2 ≠ 0,

m6

mG
(0, 1, 1) = 0.
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More generally, given a constraint � (G,~, I) = 2, if I = I (G,~), then by implicit differentiation{
m�
mG
+ m�
mI

mI
mG

= 0
m�
m~
+ m�
mI

mI
m~

= 0
. (6.20)

If � (U, V,W) = 2 and m�
mI
(U, V,W) ≠ 0, then (6.20) has a solution. Therefore I = I (G,~) may exist

and be differentiable with(
mI

mG
,
mI

m~

)
|(U,V,W ) = −

(
m�

mG
(U, V,W)

)−1 (
m�

mG
,
m�

mG

)
|(U,V,W ) .

Example 144. Consider the curve in R3 given by the pair of constraints{
G2 + ~2 + I2 = 2,
G + I = 1.

.

Locally about the point (0, 1, 1) is the curve really a one-dimensional curve? That is, near (0, 1, 1),
can we express ~ = ~ (G) and I = I (G)?

If we assume so, then by implicit differentiation{
2G + 2~ 3~

3G
+ 2I 3I

3G
= 0,

1 + 3I
3G

= 0.

We can rewrite this linear system of equations in the form(
2~ 2I
0 1

) (
3~

3G
3I
3G

)
=

(
−2G
−1

)
.

At the point (0, 1, 1), this equation becomes(
2 2
0 1

) (
3~

3G
3I
3G

)
=

(
0
−1

)
,

which has solution (
3~

3G
3I
3G

)
=

(
2 2
0 1

)−1 (
0
−1

)
=

( 1
2 −1
0 1

) (
0
−1

)
=

(
1
−1

)
.

More generally, given a pair of constraints �8 (G,~, I) = 28 (for 8 = 1, 2), if ~ = ~ (G) and
I = I (G), then by implicit differentiation

m�8

mG
+ m�8
m~

3~

mG
+ m�8
mI

3I

mG
= 0, (for 8 = 1, 2),

which can be rewritten in the form

©«
m�1
m~

m�1
mI

m�2
m~

m�2
mI

ª®®¬
©«
3~

3G

3I
3G

ª®®¬ +
©«
m�1
mG

m�2
mG

ª®¬ = 0. (6.21)
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If �8 (U, V,W) = 28 (for 8 = 1, 2), and the matrix

(
m�1
m~

m�1
mI

m�2
m~

m�2
mI

)
|(U,V,W ) is invertible, then (6.21) has the

solution ©«
3~

3G

3I
3G

ª®®¬ |(U,V,W ) = −
©«
m�1
m~
(U, V,W) m�1

mI
(U, V,W)

m�2
m~
(U, V,W) m�2

mI
(U, V,W)

ª®®¬
−1 ©«

m�1
mG

m�2
mG

ª®¬ |(U,V,W ) .
Suppose we are given = + :-variables and :-equations

�1(G1, . . . , G=, ~1, . . . , ~: ) = 21,
...

�: (G1, . . . , G=, ~1, . . . , ~: ) = 2: ,

When can we (locally) express the variables ~1, . . . , ~: as functions of G1, . . . , G=?

Theorem 145 (Implicit Function Theorem). Let Ω ⊆ R=+: be open and � : Ω → R: be a
�1-function. Denote G = (G1, . . . , G=) ∈ R=, ~ = (~1, . . . , ~: ) ∈ R: , and

� (G,~) =
©«
�1(G,~)

...

�: (G,~)

ª®®¬ =
©«
�1(G1, . . . , G=, ~1, . . . , ~: )

...

�: (G1, . . . , G=, ~1, . . . , ~: )

ª®®¬ .
Suppose (0, 1) ∈ Ω is such that � (0, 1) = _ ∈ R: , and that the : × : matrix

m�

m~
(0, 1) =

©«
m�1
m~1
(0, 1) · · · m�1

m~:
(0, 1)

...
. . .

...
m�:
m~1
(0, 1) · · · m�:

m~:
(0, 1)

ª®®®¬ ,
is invertible. Then, there exists open sets * ⊆ R=, + ⊆ R: with 0 ∈ * and 1 ∈ + , and a unique
function i : * → + such that i (0) = 1 and

� (G, i (G)) = _, ∀G ∈ * .

Moreover, i is a �1 function with Jacobian matrix(
mi

mG

)
︸︷︷︸
:×=

= −
(
m�

m~

)−1
︸  ︷︷  ︸
:×:

·
(
m�

mG

)
︸︷︷︸
:×=

, ∀G ∈ * .

Written in full, this is the equation

©«
mi1
mG1
(G) · · · mi1

mG=
(G)

...
. . .

...
mi:
mG1
(G) · · · mi:

mG=
(G)

ª®®®¬ = −
©«
m�1
m~1
(G, i (G)) · · · m�1

m~:
(G, i (G))

...
. . .

...
m�:
m~1
(G, i (G)) · · · m�:

m~:
(G, i (G))

ª®®®¬
−1 ©«

m�1
mG1
(G, i (G)) · · · m�1

mG=
(G, i (G))

...
. . .

...
m�:
mG1
(G, i (G)) · · · m�:

mG=
(G, i (G))

ª®®®¬ .
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Example 146 (The special case : = 1). � : Ω ⊆ R=+1 → R, with � (G,~) = � (G1, . . . , G=, ~). That
is, there is a single constraint � (G,~) = 2 ∈ R. Suppose 0 ∈ R= and 1 ∈ R such that (0, 1) ∈ Ω
with � (0, 1) = 2. The Implicit Function Theorem tells you that if m�

m~
(0, 1) ≠ 0, then we can find a

differentiable function ~ = ~ (G1, . . . , G=) locally near G = 0, with ~ (0) = 1, solving the constraint

� (G1, . . . , G=, ~ (G1, . . . , G=)) = 2.

Example 147 (The special case = = 1, : = 2). � : Ω ⊆ R3 → R2, with � (G,~, I) = � (G,~1, ~2).
Given a pair of constraints � (G,~, I) = 2 ∈ R2, suppose 0 ∈ R and 1 ∈ R2 is such that (0, 1) ∈ Ω
with � (0, 1) = 2. The Implicit Function Theorem tells you that if the matrix(

m�1
m~1
(0, 1) m�1

m~2
(0, 1)

m�2
m~1
(0, 1) m�2

m~2
(0, 1)

)
,

is invertible, then we can find differentiable functions ~1 = ~1(G), ~2 = ~2(G) locally near G = 0,
with (~1(0), ~2(0)) = 1, solving the constraint

� (G,~1(G), ~2(G)) = 2.

Remark. We write � = � (G,~) and solve ~ as a function of G , but in fact, the ordering of the
variables is irrelevant; we just need to check the invertibility of the appropriate submatrix of the
Jacobian matrix �� (G,~).
Example 148. Consider the constraints{

GI + sin(~I − G2) = 8,
G + 4~ + 3I = 18.

Near (2, 1, 4), can we locally solve for two of the variables as functions of the third?

Letting � (G,~, I) = (GI + sin(~I − G2), G + 4~ + 3I), we find that

�� (G,~, I) =
(
I − 2G cos(~I − G2) I cos(~I − G2) G + ~ cos(~I − G2)

1 4 3

)
,

and hence

�� (2, 1, 4) =
(
0 4 3
1 4 3

)
.

By looking at the invertiblilty of 2 × 2 submatrices we can apply the Implicit Function Theorem.

•
����0 4
1 4

���� = −4 ≠ 0, and hence by the Implicit Function Theorem, G and ~ can be expressed as

functions of I near (2, 1, 4).

•
����0 3
1 3

���� = −3 ≠ 0, and hence by the Implicit Function Theorem, G and I can be expressed as

functions of ~ near (2, 1, 4).

•
����4 3
4 3

���� = 0, and so no conclusion can be drawn from the Implicit Function Theorem in

regards to whether ~ and I can be expressed as functions of G near (2, 1, 4).
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6.3 Inverse Function Theorem

Theorem 149 (Inverse Function Theorem). Let Ω ⊆ R= be open, 5 : Ω → R= be a �1 function,
and 5 (0) = 1. Suppose �5 (0) is invertible (as an = × = matrix). Then there exists open sets
* ,+ ⊆ R= with 0 ∈ * and 1 ∈ + , and a unique function 6 : + → * with 6(1) = 0 such that

6 ◦ 5 (~) = ~, ∀~ ∈ * ,
5 ◦ 6(G) = G, ∀G ∈ + .

That is 6 is a local inverse to 5 . Moreover, 6 is also a �1 function with

�6(G) = �5 (6(G))−1, ∀G ∈ + .

We note that the Inverse Function Theorem follows from the Implicit Function Theorem:

That is, define � : 5 (Ω) × Ω ⊆ R= × R= → R= by � (G,~) = 5 (~) − G . Then � (1, 0) = 0 and
m�
m~
|(0,1) = �5 (0) is invertible. So by the Implicit Function Theorem, ~ = 6(G) locally with

0 = � (G, 6(G)) = 5 ◦ 6(G) − G .

More precisely, ~ = 6(G) is precisely the local inverse of 5 as claimed in the Inverse Function
Theorem.

However, the Inverse Function Theorem is not just a special case of the Implicit Function
Theorem, the two theorems are actually equivalent.

Indeed, suppose the Inverse Function Theorem holds and let � : Ω ⊆ R=+: → R: be a
�1 function with m�

m~
|(0,1) be invertible with � (0, 1) = 2. Define � : Ω ⊆ R=+: → R=+: by

� (G,~) = (G, � (G,~)). Then

�� (0, 1) =
(

�= 0
m�
mG
(0, 1) m�

m~
(0, 1)

)
.

Since det(�� (0, 1)) = det m�
m~
(0, 1) ≠ 0, �� (0, 1) is invertible. Thus, by the Inverse Function

Theorem, there exists a local inverse �−1. More precisely, for (G,~) near (0, 1) we have

(G,~) = � ◦�−1(G,~)
= � (�−11 (G,~),�−12 (G,~))
= (�−11 (G,~), � (�−11 (G,~),�−12 (G,~))).

In particular G = �−11 (G,~) and ~ = � (G,�−12 (G,~)). Setting i (G) = �−12 (G, 2), we see that

� (G, i (G)) = � (G,�−12 (G, 2)) = 2,

and i is precisely the desired function as claimed in the Implicit Function Theorem.

Remark. For a full proof of the Implicit and Inverse Function Theorems see Math3060.
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Example 150. Let 5 : R2 → R2 be the �1 function 5 (G,~) = (G2 − ~2, 2G~). Since 5 (−G,−~) =
5 (G,~), 5 is not injective and so cannot have a global inverse. However, we have that

�5 (G,~) =
(
2G −2~
2~ 2G

)
,

which has determinant 4(G2 + ~2). So �5 (G,~) is invertible iff (G,~) ≠ (0, 0). Therefore, by the
Inverse Function Theorem, 5 is locally invertible about every point other than the origin.

Suppose 6(D, E) is such a local inverse of 5 (G,~) near the point (G,~) = (1,−1). Then, we find
that 6(0,−2) = (1,−1) with

�6(0,−2) = �5 (1,−1)−1 = 1
4

(
1 −1
1 1

)
.

In both theorems, we assume a certain Jacobian matrix is invertible. Without this assumption,
the theorems are inconclusive, and the existence of a local implicit or inverse function is unknown.
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