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1.1 Euclidean space R=

In this course, we are concerned with the analysis of functions between finite dimensional vector
spaces over the real numbers R. For some fixed dimension = ∈ N, up to isomorphism such a
vector space is =-dimensional Euclidean space R=.

R= = R × · · · × R︸        ︷︷        ︸
=−C8<4B

= {(G1, . . . , G=) : G8 ∈ R, ∀8 ∈ {1, . . . , =}}.

Notation: In these printed notes we will use regular lettering G = (G1, . . . , G=) ∈ R= to denote
a vector, with subscripts denoting the component of such a vector in Cartesian coordinates. In
some cases, we will also use capital letters �, �,�, . . . to represents points within R=, and use

−→
��

to denote the vector starting from point � and ending at point �.

Basic Operations on Vectors

Let G = (G1, . . . , G=) ∈ R=, ~ = (~1, . . . , ~=) ∈ R= be a pair of vectors and _ ∈ R a scalar.

• Equality: G = ~ ⇐⇒ G8 = ~8 , for all 8 ∈ {1, . . . , =}.
’Two vectors are the same if and only if all of their components agree.’

• Addition: G + ~ = (G1 + ~1, . . . , G= + ~=).
’Vectors are summed component wise.’
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• Scalar multiplication: _G = (_G1, . . . , _G=).
’Scaling a vector scales all of its components by the same amount.’

Length and the Dot Product

As well as the usual vector space structure of R=, we also equip it with its natural inner product,
known as the dot product.

Definition 1. For any pair of vectors G,~ ∈ R= we define their dot product to be

G · ~ :=
=∑
8=1

G8~8 ∈ R.

For any vector G ∈ R= we define its (Euclidean) length ‖G ‖ via the equation

‖G ‖2 := G · G = G21 + · · · + G2= .

We note that the dot product is a map R= × R= → R. Moreover 0 · G = 0, for every G ∈ R=.

Remark. In dimension = ≤ 3, ‖G ‖ agrees with the usual notion of length you calculate by
applying the Pythagorean theorem.

Lemma 1. Let G,~, I ∈ R= and _ ∈ R. Then the dot product enjoys the following properties.

a) G · ~ = ~ · G .

b) (G + ~) · I = G · I + ~ · I.

c) (_G) · ~ = _(G · ~) = G · (_~).

d) G · G ≥ 0, with equality iff G = 0 ∈ R=.
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e) If G ≠ 0 and ~ ≠ 0, then G · ~ = ‖G ‖‖~‖ cos\ ,

where \ is the size of the angle formed between the vectors G and ~.

Proof. Properties a)-d) follow trivialy from the definitions and are left as an exercise. To show e)
we first consider the case where \ ∈ [0, c2 ]. By the definition of the dot product, we have

‖~ − G ‖2 = (~ − G) · (~ − G)
= ~ · ~ − G · ~ − ~ · G + G · G
= ‖~‖2 + ‖G ‖2 − 2G · ~.

Alternatively, by the Pythagorean theorem

‖~ − G ‖2 = (‖G ‖ − ‖~‖ cos\ )2 + (‖~‖ sin\ )2

= ‖~‖2 + ‖G ‖2 − 2‖G ‖‖~‖ cos\ .

Comparing the two gives the result for \ ∈ [0, c2 ]. Finally, if \ ∈ ( c2 , c], we consider instead the
vectors G and −~, which now form an angle of size c − \ ∈ [0, c2 ). We may then apply the above
result to conclude that

G · (−~) = ‖G ‖‖−~‖ cos(c − \ ) .

Since G · (−~) = −(G · ~), ‖−~‖ = ‖~‖, and cos(c − \ ) = − cos(\ ), the result follows. �

Remark. For any two vectors G,~ ∈ R= which form an angle of size \ ,

G and ~ are orthogonal ⇐⇒ \ =
c

2
⇐⇒ cos(\ ) = 0 ⇐⇒ G · ~ = 0.

The following is a simple lemma which states that the diagonals of a parallelogram are
orthogonal to each other if and only if the parallelogram is in fact a rhombus.

Lemma 2. For any two vectors G,~ ∈ R=, G +~ is orthogonal to G −~ if and only if G and ~ have
the same length.

Proof. From the previous remark, G + ~ and G − ~ are orthogonal iff (G + ~) · (G − ~) = 0, but a
direct calculation leads to

(G + ~) · (G − ~) = G · G + G · ~ − G · ~ − ~ · ~ = ‖G ‖2 − ‖~‖2,

from which the result follows immediately. �
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As an application of the previous lemma, we give a simple proof that for any triangle lying on
a circle with one edge given by a diameter, the opposite angle is c

2 .

If G =
−−→
$� and ~ =

−−→
�$ , then

−→
�� = G + ~ and

−→
�� = G − ~. Since the length of G and ~ are the

same (the radius of the circle) by the previous lemma, these two vectors are orthogonal.

Cauchy-Schwarz and the Triangle Inequality.

The following is an important inequality which bounds the size of the dot product by the product
of the lengths.

Lemma 3 (Cauchy-Schwarz inequality). For any G,~ ∈ R=,

|G · ~ | ≤ ‖G ‖‖~‖. (1.1)

Moreover, equality holds if and only if G and ~ are parallel. That is, G = _~ or ~ = _G for some
_ ∈ R.

Remark. For = ≤ 3, this follows immediately from the equality G · ~ = ‖G ‖‖~‖ cos\ .

Proof. If ~ = 0 ∈ R=, then the result is trivially true with ~ = 0 · G . Therefore, we may assume
throughout the proof that ~ ≠ 0. For any _ ∈ R, we consider the quantity

0 ≤ ‖G − _~‖2 := (G − _~) · (G − _~) = ‖G ‖2 − 2_G · ~ + _2‖~‖2. (1.2)

As ~ ≠ 0, we may choose _ := G ·~
‖~ ‖2 ∈ R in (1.2), which simplifies to

‖G ‖2 − |G · ~ |‖~‖2 ≥ 0.

Rearranging, we can conclude (1.1) holds. Moreover, equality in (1.1) holds iff ‖G − _~‖ = 0 for
our choice of _, which happens iff G and ~ are parallel. �

Remark. Let G,~ ∈ R= be non-zero vectors. For = ≤ 3, we proved that

G · ~ = ‖G ‖‖~‖ cos\ .

Rearranging, we have

\ = arccos
(
G · ~
‖G ‖‖~‖

)
∈ [0, c] .

For any = ∈ N, Cauchy-Schwarz implies that

−1 ≤ G · ~
‖G ‖‖~‖ ≤ 1.

Thus, we can define

\ = arccos
(
G · ~
‖G ‖‖~‖

)
∈ [0, c],

to be the angle between G and ~ in all dimensions.
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Example 4. For the pair of vectors G = (1, 5, 2, 3, 4), ~ = (3, 3, 1, 1, 0) ∈ R5, we have

G · G = 55, ~ · ~ = 20, G · ~ = 23.

Therefore, the angle between them is \ = arccos
(
2.3√
11

)
.

Just like for the absolute value in R, the triangle inequality holds for the length of vectors in
R= as well.

Lemma 5. For any G,~ ∈ R=,
‖G + ~‖ ≤ ‖G ‖ + ‖~‖. (1.3)

Moreover, equality holds if and only if G = _~ or ~ = _G for some _ ≥ 0.

Proof. By expanding the dot product and using the Cauchy-Schwarz inequality

‖G + ~‖2 = ‖G ‖2 + 2G · ~ + ‖~‖2

≤ ‖G ‖2 + 2 |G · ~ | + ‖~‖2

≤ ‖G ‖2 + 2‖G ‖‖~‖ + ‖~‖2

= (‖G ‖ + ‖~‖)2 ,

which is precisely (1.3). Moreover, we have equality in (1.3) iff we have equality in Cauchy-
Schwarz and G · ~ = |G · ~ |, which happens iff G is parallel to ~ with _ ≥ 0. �

The Cross Product

For this section, we restrict our attention to the case = = 3.
Before stating the definition of the cross product of two vectors in R3, we recall that the

determinant of a 2 × 2 matrix is ����0 1

2 3

���� = 03 − 12,
and for a 3 × 3 matrix������01 02 03

11 12 13
21 22 23

������ = 01
����12 13
22 23

���� − 02 ����11 13
21 23

���� + 03 ����11 12
21 22

���� .
Definition 2. For any two vectors G = (G1, G2, G3), ~ = (~1, ~2, ~3) ∈ R3, we define thie cross
product to be

G × ~ :=

������ 8̂ 9̂ :̂

G1 G2 G3
~1 ~2 ~3

������ =
����G2 G3
~2 ~3

���� 8̂ − ����G1 G3
~1 ~3

���� 9̂ + ����G1 G2
~1 ~2

���� :̂ ∈ R3, (1.4)

where 8̂ = (1, 0, 0), 9̂ = (0, 1, 0) and :̂ = (0, 0, 1).
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Example 6. If G = (2, 3, 4) and ~ = (1, 2, 3), then

G × ~ =

������8̂ 9̂ :̂

2 3 4
1 2 3

������ =
����3 4
2 3

���� 8̂ − ����2 4
1 3

���� 9̂ + ����2 3
1 2

���� :̂
= 8̂ − 2 9̂ + :̂
= (1,−2, 1).

Remark.
8̂ × 8̂ = 0, 8̂ × 9̂ = :̂, 8̂ × :̂ = − 9̂ ,
9̂ × 8̂ = −:̂, 9̂ × 9̂ = 0, 9̂ × :̂ = 8̂,

:̂ × 8̂ = 9̂ , :̂ × 9̂ = −8̂, :̂ × :̂ = 0.

The cross product satisfies the right hand rule.

Properties of the Cross Product

Let G,~, I ∈ R3 and U, V ∈ R.

a) G × ~ = −~ × G

b) (UG + V~) × I = U (G × I) + V (~ × I).

c) (G × ~) · G = (G × ~) · ~ = 0, so G × ~ is orthogonal to the plane spanned by G and ~.

d) If \ denotes the angle between G and ~, then

‖G × ~‖ = ‖G ‖‖~‖ sin\,

which is equal to the area of the parallelogram generated by G and ~.

Proof. Properties a)-c) follow follow directly from the definition and are left as an Exercise. To
show d) we begin by expanding the term (G × ~) · (G × ~), and find that

‖G × ~‖2 = ‖G ‖2‖~‖2 − (G · ~)2

= ‖G ‖2‖~‖2(1 − cos2(\ ))
= ‖G ‖2‖~‖2 sin2(\ ) .

Note that the area is given by the base ‖G ‖ times the height ‖~‖ sin\ . �

Remark. In the case that G,~ ∈ R2, we see that

G × ~ =

������ 8̂ 9̂ :̂

G1 G2 0
~1 ~2 0

������ =
����G1 G2
~1 ~2

���� :̂, (1.5)

and so ‖G × ~‖ = G1~2 − G2~1.
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Triple Product

For any G,~, I ∈ R3, we define their triple product as (G × ~) · I ∈ R.
Unravelling the definition, we see that

(G × ~) · I =

������ 8̂ 9̂ :̂

G1 G2 G3
~1 ~2 ~3

������ · ©«
I1
I2
I3

ª®¬ =

������I1 I2 I3
G1 G2 G3
~1 ~2 ~3

������ =
������G1 G2 G3
~1 ~2 ~3
I1 I2 I3

������ . (1.6)

It follows from (1.6) that

(G × ~) · I = (~ × I) · G = (I × G) · ~ = −(~ × G) · I = −(I × ~) · G = −(G × I) · ~

The triple product has the following geometric interpretation.

Lemma 7. | (G × ~) · I | is the volume of the parallelepiped spanned by G,~ and I.

Proof. Let U denote the angle formed between the vector G × ~ and I.
Note that, after possibly replacing G × ~ with ~ × G , we may assume that U ∈ [0, c2 ].
Since (G × ~) · I = ‖G × ~‖‖I‖ cosU , and our parallelepiped has base area ‖G × ~‖ and height
‖I‖ cosU , the result follows. �

Remark. The triple product (G × ~) · I = 0 iff the volume of the parallelepiped vanishes iff
{G,~, I} are linearly dependent.

Example 8. Consider the parallelepiped spanned by the vectors (1, 1, 0), (0, 1, 0), (1, 1, 1) ∈ R3.
The triple product of these three vectors is������1 1 0

0 1 0
1 1 1

������ = 1,

and therefore the parallelepiped has unit volume.

1.2 Affine Subspaces
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