

Def (Directional Derivative)
Let $\Omega \subseteq \mathbb{R}^n$ be open, $\vec{a} \in \Omega$, $f : \Omega \to \mathbb{R}$.
Let üer he a unit vector
The directional devivative of f in the
direction of in at a is defined by
$D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t}$
= Rate of change of f in the direction of u
at the pt. a.
Thm Suppose f is differentiable at a.
Let û FIR be a unit vector.
Then Duf(a) exists and
$D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u}$
•
Remark: 0
f diff. All directions All partial
f diff. All directions All partial derivatives exist derivatives exist.
$= rf \vec{u} = of/(nof)$
2) By Cauchy-Schwarz Inequality,
2) By Cauchy-Schwarz Inequality, of \leq Duf \leq \leq \tau f \cdot \tau = \sqrt{ \tau f } =) L f increases most rapidly in the direction of
=) of increases most rapidly in the direction of

decrewes

Find the directional derivative of each of the following functions at the given point and direction:

(a)
$$x^2 + y^3 + z^4$$
, $(3,2,1)$; $(-1,0,4)/\sqrt{17}$.

(b)
$$e^{xy} + \sin(x^2 + y^2)$$
, $(1, -3)$; $(1, 1)/\sqrt{2}$.

$$g(x,y) = e^{xy} + 4in(x^2 + y^2)$$

$$g_x = y e^{xy} + 2x \cos(x^2 + y^2)$$

Since g, gx, gy are ct on R, g is C' on R

let v = (1,1,1/52. Then, by Thm,

Ex2 Suppose $D_{\mathbf{u}}f(2,3)=3$ and $D_{\mathbf{v}}f(2,3)=-4$. Find the direction where f decreases most rapidly at (2,3). Aw: Note + decreases most rapidly at (2,3) in the direction - - + (2,3)/117f(2,3)| Note $D\vec{u}+(2,3) = \nabla f(2,3) \cdot \vec{u}$ $D\vec{v} + (2,3) = \nabla f(2,3) \cdot \vec{v}$ Let Qf(2,3) = (a,b). Then (点 A + 点 b = 3 Since $A \cdot A = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ se have $\begin{pmatrix} a \\ b \end{pmatrix} = A \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ $\int_{S} pf(2,3) = \left(-\frac{1}{5}, \frac{7}{5}\right)$ The required direction is - \(\frac{1}{2,3} \) \(\lambda \) \(\lambda \) \(\lambda \) = -(- 点, 元) / 1 ~ 性

Let $\mathbf{u} = (1/\sqrt{2}, 1/\sqrt{2}), \mathbf{v} = (1/\sqrt{2}, -1/\sqrt{2})$ and $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable at $(\mathbf{2}, \mathbf{3})$.

- (i) Find the directional derivatives at (0,0) (and show they all exist),
- (ii) Show that the formula $D_{\underline{v}}f(0,0) = \sum_{i=1}^{2} v_{j}D_{j}f(0,0)$ fails for some vectors $\underline{v} \in$
- (iii) Hence, using (ii) together with the appropriate theorem, prove that f is not differentiable at (0,0).

Ans: (i) Let $\vec{u} = (\cos 0, \sin \theta)$ be a unit vector. Then $D_{\vec{u}}f(0,0) = \lim_{t\to 0} \frac{f(\vec{o}+t\vec{u})-f(\vec{o})}{t}$

> = 15m | t cos 0 | (t 45h 0) ItIt

lim | cos 0 | 4in 0

(cos 0 | 4in 0

 $= D_{40} + (0,0) = 0$ (il) $\frac{\partial \dot{x}}{\partial y} = D \vec{u}(\vec{x}) f(0,0) = 0$

Take V = (65 = (5, 5)

Then $D_{\overline{v}} + (0, 0) = \left| \frac{1}{52} \right| \left(\frac{1}{52} \right) = \frac{1}{2}$

while \$f(0,0)· v = (0,0)· (点, 点) = 0 + Diflo,0)

Since $\overrightarrow{\nabla} + (0,0) \cdot \overrightarrow{V} \neq D\overrightarrow{V} + (0,0)$, $\overrightarrow{V} + \overrightarrow{V} + \overrightarrow{V} + \overrightarrow{V} + (0,0)$ 仙儿

Ex4 Let Ω ⊆ R2 be open. Let f: si → R be c' Let ū, v be two unit vectors in 12. Show that $D_{\vec{v}}(D_{\vec{u}}f) = D_{\vec{u}}(D_{\vec{v}}f)$ on Ω Recall: (Clairant's Thm) If fxy, fyx exist and are cts on 12, then $f_{xy} = f_{yx}$ on Ω Pf: Note f c2 on se > f C' on se => f diff. on s $\int_{0}^{\infty} \nabla u = \nabla f \cdot u = u_{1} f_{x} + u_{2} f_{y}$ Then $\nabla(Duf) = (u_i f_{xx} + u_2 f_{yx}, u_i f_{xy} + u_1 f_{yy})$ cts > Puf diff. Hence Do (Duf) = O (Duf), v = U, V, fxx + U2V, fyx + U, V2 fxy + U2V2fyy by Clairant's Thm. Similarly Du (Dof) = VIU, frx + VIU, fyx + VIUI fry + VIUI fry $= D_{\overrightarrow{v}}(D_{\overrightarrow{u}}f)$

<u>Ex5</u>	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a real-valued function on \mathbb{R}^2 such that, for some $\delta > 0$, there exist positive constants $M, C \in \mathbb{R}$ such that:
	$ f(x,y) - M \le C \sin^2((x,y))$
	for all $(x,y) \in B_{\delta}(0,0)$. Is f necessarily differentiable at $(0,0)$? If so, prove it. If not, provide a counter-example.
Ans:	flo,0)-M = (29in2(1(0,0) 1) = 0
	$=) \qquad f(0,0) = M$
	For 0 < h < f ye have (h, o) & Bg(0,0) and so
	For $0 < h < \mathcal{E}$ we have $(h, \delta) \in B_{\mathcal{E}}(0, \delta)$ and so $\left \frac{f(h, \delta) - f(0, \delta)}{h} \right \leq \frac{C + 2ih^{2}((h, \delta))}{ h }$
	h (h)
	= c 4in2([h])
	Ihi /
	= C Sin (hl) · Sin (hl)
	Since Im c sin2(IhI) = 0, by squeeze thm,

Since
$$\lim_{h\to 0} c \frac{\sin^2(|h|)}{|h|} = 0$$
, by ignerize that,
$$\lim_{h\to 0} \left| \frac{f(h,0) - f(v,0)}{h} \right| = 0$$

$$f_{\mathsf{X}}(v,v) = \lim_{h\to 0} \frac{f(h,v) - f(v,v)}{h} = 0$$

Similarly
$$f_{y}(0,0) = 0$$
.

Let $E(x,y) = f(x,y) - f(0,0) - \nabla f(0,0) - f(x,y) - f(0,0)$

$$= f(x,y) - M$$

