$H W 2 \oint 12.5$ Q33, 39,57 § $13.1 Q 19 \oint 13.3 Q 2,18$

$$
\oint 11.3 \quad Q 27,59 \quad\{11.4 \quad Q 6,19
$$

1. Find the distance from the point to the line

$$
(2,1,3) \quad x=2+2 t, y=1+6 t, z=3
$$

Sol The parametric form of the line is

$$
(x, y, z)=(2,1,3)+t(2,6,0)
$$

So point $(2,1,3)$ is on the line, and the distance is 0 .

In general,
Method 1

$$
\cos \theta=\frac{u \cdot v}{|u||v|}
$$

$$
\begin{aligned}
d & =|\overrightarrow{A P}| \cdot \sin \theta \quad \theta \in[0, \pi] \\
& =|\overrightarrow{A P}| \sqrt{1-\cos ^{2} \theta} \\
& =|\overrightarrow{A P}| \sqrt{1-\left(\frac{\overrightarrow{A P} \cdot \overrightarrow{A B}}{|\overrightarrow{A P}||\overrightarrow{A B}|}\right)^{2}}
\end{aligned}
$$

Method 2

$$
|\overrightarrow{A P} \times \overrightarrow{A B}|=|\overrightarrow{A P}||\overrightarrow{A B}| \sin \theta
$$

$\Rightarrow \quad|\overrightarrow{A P}| \cdot \sin \theta=\frac{|\overrightarrow{A P} \times \overrightarrow{A B}|}{|\overrightarrow{A B}|}$ but you have to compute $\overrightarrow{A P} \times \overrightarrow{A B}$ by $\left|\begin{array}{c}i \overrightarrow{ } k \\ \frac{\overrightarrow{A P}}{A B}\end{array}\right|$
2. Find parametric equations for the line that is tangent to the given curve at the given parameter value $t=t_{0}$

$$
\vec{r}(t)=\ln t \vec{i}+\frac{t-1}{t+2} \vec{j}+t \ln t \vec{k}, \quad t_{0}=1
$$

Sol Find a point on the line and the direction of the line

$$
p: \vec{r}\left(t_{0}\right)=\ln (1) \vec{i}+\frac{1-1}{1+3} \vec{j}+1 \cdot \ln (1) \vec{k}=(0,0,0)-(1)
$$

Tangent vector (velocity vector) is given by

$$
\begin{align*}
\frac{d}{d t} \vec{r}(t) & =\dot{\vec{r}}(t)=\vec{r}^{\prime}(t) \\
& =\frac{1}{t} \cdot \vec{i}+\frac{3}{(t+2)^{2}} \vec{j}+(\ln t+1) \vec{k} \\
\vec{r}^{\prime}\left(t_{0}\right) & =\vec{i}+\frac{1}{3} \vec{j}+\vec{k}-(2) \tag{2}
\end{align*}
$$

Consequently

$$
\begin{aligned}
\varphi(s) & =p+s \cdot \vec{r}^{\prime}\left(t_{0}\right) \\
& =(0,0,0)+s \cdot\left(1, \frac{1}{3}, 1\right)
\end{aligned}
$$

$f: \quad x=s, \quad y=\frac{1}{3} s, \quad z=s$
3. Find the arc length parameter along the curve from the point where $t=0$ by evaluating the integral

$$
s=\int_{0}^{t}|\vec{v}(\tau)| d \tau . \quad(\vec{v} \text { the velocity vector })
$$

Then find the length of the indicated portion of the curve

$$
\vec{r}(t)=(4 \cos t) \vec{i}+(4 \sin t) \vec{j}+3 t \vec{k}, \quad 0 \leq t \leq \pi / 2
$$

Remark on arc length parametrization

$$
\frac{d \stackrel{\rightharpoonup}{r}}{d s}=\frac{d \stackrel{\rightharpoonup}{r}}{d t} \frac{d t}{d s}=\frac{d \stackrel{\rightharpoonup}{r}}{d t} \frac{1}{\frac{d s}{d t}}=\frac{d \stackrel{\rightharpoonup}{r} / d t}{|\vec{v}(t)|}=\frac{\vec{v}}{|\vec{v}|}
$$

is the unit tangent vector

$$
\left.S=\int_{0}^{s}\left|\frac{d \vec{r}}{d s}\right| d \tau=\int_{0}^{s} \right\rvert\, d \tau=s
$$

Sol $\vec{v}(t)=\frac{d \vec{r}}{d t}=(-\psi \sin t, \psi \cos t, 3)$

$$
\begin{gathered}
S=\int_{0}^{t}|\vec{v}(\tau)| d \tau=\int_{0}^{t} \sqrt{(-4 \sin \tau)^{2}+(4 \cos \tau)^{2}+3^{2}} d \tau=5 t \\
\quad \text { Length }=S(t=\pi / 2)=\frac{5}{2} \pi
\end{gathered}
$$

4. Vertical and horizontal lines
a. Show that every vertical line in the $x y$-plane has a polar equaton of the form $r=a \sec \theta$.
b. Find the analogous polar equation for horizontal lines in the $x y$-plane.

Sol.
a. Pf All vertical lines have the form $x=a$ for some $a \in \mathbb{R}$
Polar $\operatorname{coordinate} \quad x=r \cos \theta$.
Then polar equation is $\quad a=x=r \cos \theta$

$$
\Rightarrow r=\frac{a}{\cos \theta}=a \sec \theta
$$

b. Sol All horizontal lines have the form $y=b$ Polar coordinate $y=r \sin \theta$

$$
\begin{aligned}
& \Rightarrow \quad b=y=r \sin \theta \\
& \Rightarrow \quad r=\frac{b}{\sin \theta}=b \csc \theta
\end{aligned}
$$

5. Find the slopes of the curves at the given points Sketch the curves along with their tangents at these points

$$
r=\cos 2 \theta \text { at } \theta=0, \pm \frac{\pi}{2}, \pi
$$

Slope $\vec{r}(t)=(x(t), y(t)) \cdots y=f(x)$ graph

$$
\text { slope }=\frac{d y}{d x}=f^{\prime}(x)
$$

In polar coordinates, polar equation $r=r(\theta)$

$$
\Rightarrow\left\{\begin{array}{l}
x=r \cos \theta=r(\theta) \cos \theta=: x(\theta) \\
y=r \sin \theta=r(\theta) \sin \theta=: y(\theta)
\end{array}\right.
$$

parametrized by θ.

$$
\text { slope }=\frac{d y}{d x}=\frac{d y}{d \theta} \frac{d \theta}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

In the textbook, negative r is allowed

$$
\begin{aligned}
(x, y) & =(r \cos \theta, r \sin \theta) \quad r<0 \\
& =(|r| \cos (\theta+\pi),|r| \sin (\theta+\pi))
\end{aligned}
$$

For $r<0,(r, \theta) \Leftrightarrow(|r|, \theta+\pi)$
5. Find the slopes of the curves at the given points Sketch the curves along with their tangents at these points
$r=\cos 2 \theta$ at $\theta=0, \pm \frac{\pi}{2}, \pi \quad$ Four-leaved rose
Sol

$$
\left.\begin{array}{l}
\text { Sol slope }=\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\
\left\{\begin{array}{l}
x=r \cos \theta=\cos 2 \theta \cos \theta \\
y=r \sin \theta=\cos 2 \theta \sin \theta
\end{array}\left[\begin{array}{l}
=\frac{1}{2}(\cos 3 \theta+\cos \theta) \\
\frac{1}{2}(\sin 3 \theta-\sin \theta)
\end{array}\right]\right.
\end{array}\right\} \begin{aligned}
& \Rightarrow \text { slope }=\frac{-\sin 2 \theta \cdot 2 \sin \theta+\cos 2 \theta \cos \theta}{-\sin 2 \theta \cdot 2 \cos \theta-\cos 2 \theta \sin \theta}=\frac{6 \cos ^{3} \theta-5 \cos \theta}{6 \sin ^{3} \theta-5 \sin \theta}
\end{aligned}
$$

Domain of theta

$$
\theta \in[-\pi, \pi]
$$

then

$$
\begin{array}{ll}
\text { slope }(\theta=0)=\infty & \text { slope }(\theta=\pi)=\infty \\
\text { slope }\left(\theta=-\frac{\pi}{2}\right)=0 & \text { slope }\left(\theta=\frac{\pi}{2}\right)=0
\end{array}
$$

Also $\operatorname{slope}\left(\theta=-\frac{3}{4} \pi\right)=1=$ slope $\left(\theta=\frac{\pi}{4}\right)$
slope $\left(\theta=-\frac{\pi}{4}\right)=-1=$ slope $\left(\theta=\frac{3}{4} \pi\right)$

Sketch
$\begin{array}{ll}\text { Rotation Symm } \\ \theta=-\pi & r=1\end{array}$

Consider $\theta e\left[0, \frac{\pi}{2}\right]$
Take special points

$$
2 \theta \rightarrow \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{5 \pi}{6}, \pi
$$

color correspondence
$\theta=\frac{5 \pi}{12}$

$$
\theta=\frac{\pi}{2}
$$

$$
r=1
$$

$$
r=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}
$$

$$
r=\cos \frac{\pi}{3}=\frac{1}{2}
$$

$$
r=\cos \frac{\pi}{2}=0
$$

$$
r=\cos \frac{2 \pi}{3}=-\frac{1}{2}
$$

$$
r=-\frac{\sqrt{3}}{2}
$$

$$
r=-1
$$

