HWI Remainder $\oint_{12.3 \quad Q 6,13,28 \quad \oint 12.4 \quad Q 2,11,21}$

$$
\oint 12.5 \quad Q 3,16,22,24
$$

1. Given $\vec{v}, \vec{u} \in \mathbb{R}^{n}$, what is the projection of \vec{u} onto \vec{v} ?

Def The vector projection of \vec{u} onto a nonzero vector \vec{v}, denoted by $\operatorname{proj}_{\vec{v}} \vec{u}$, is given by the following formula:

$$
\operatorname{proj}_{\vec{v}} \vec{u}:=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}} \stackrel{\rightharpoonup}{v}
$$

Explanation: $\operatorname{proj}_{\vec{v}} \vec{u}$ is a vector \vec{W} that has direction \vec{v}, and "length" $|\vec{u}| \cos \theta$
Here θ is the angle between \vec{u} and \vec{v}

Recall the proof of $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$

Pythagoras the in the Green Region

This length $|\vec{u}| \cos \theta$ could be negative ("oriented length") and is called the scalar component of \vec{u} in the direction of \vec{v} or \qquad \vec{u} onto \vec{v}
$[$ Notations $|\vec{u}| \equiv$ length of $\vec{u} \equiv\|\vec{u}\|]$

Consequently

$$
\operatorname{proj}_{\vec{v}} \stackrel{\rightharpoonup}{u}=\stackrel{\rightharpoonup}{w}=|\stackrel{\rightharpoonup}{u}| \cos \theta \frac{\stackrel{\rightharpoonup}{v}}{|\stackrel{\rightharpoonup}{v}|}=|\stackrel{\rightharpoonup}{u}| \frac{\stackrel{\rightharpoonup}{u} \cdot \stackrel{\rightharpoonup}{v}}{|\stackrel{\rightharpoonup}{u}||\stackrel{\rightharpoonup}{v}|} \frac{\stackrel{\rightharpoonup}{v}}{|\stackrel{\rightharpoonup}{v}|}=\frac{\stackrel{\rightharpoonup}{u} \cdot \stackrel{\rightharpoonup}{v}}{|\stackrel{\rightharpoonup}{v}|^{2}} \stackrel{\rightharpoonup}{v}
$$

EXAMPLE 5 Find the vector projection of $\mathbf{u}=6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ onto $\mathbf{v}=\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ and the scalar component of \mathbf{u} in the direction of \mathbf{v}.

Solution We find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ from Equation (1):

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{v}} \mathbf{u} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{6-6-4}{1+4+4}(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}) \\
& =-\frac{4}{9}(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k})=-\frac{4}{9} \mathbf{i}+\frac{8}{9} \mathbf{j}+\frac{8}{9} \mathbf{k} .
\end{aligned}
$$

We find the scalar component of \mathbf{u} in the direction of \mathbf{v} from Equation (2):

$$
\begin{aligned}
|\mathbf{u}| \cos \theta & =\mathbf{u} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}=(6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot\left(\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}-\frac{2}{3} \mathbf{k}\right) \\
& =2-2-\frac{4}{3}=-\frac{4}{3} .
\end{aligned}
$$

2. Unit vectors in the plane Show that a unit vector in the plane can be expressed as $\mathbf{u}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}$, obtained by rotating \mathbf{i} through an angle θ in the counterclockwise direction. Explain why this form gives every unit vector in the plane.

Pf Given any unit vector $\vec{u} \in \mathbb{R}^{2}, \vec{u}=\left(u^{\prime}, u^{2}\right) \equiv u^{\prime} \vec{i}+u^{2} \vec{j}$ and $|\vec{u}|=1$, to determine θ, just consider the angle α between \vec{u} and \vec{i},

then $\quad \cos \alpha=\frac{\vec{u} \cdot \vec{i}}{|\vec{u}||\vec{i}|}=u^{\prime}, \quad \alpha \in[0, \pi] \quad$ (2.1)
Note that $|\vec{u}|=1 \Leftrightarrow\left(u^{\prime}\right)^{2}+\left(u^{2}\right)^{2}=1$

$$
\text { By (2.1) } \Rightarrow\left(u^{2}\right)^{2}=1-\cos ^{2} \alpha=\sin ^{2} \alpha \Rightarrow\left|u^{2}\right|=\sin \alpha \geq 0
$$

Case I $u^{2} \geq 0 \Rightarrow u^{2}=\left|u^{2}\right|=\sin \alpha$.

$$
\vec{u}=u^{\prime} \vec{i}+u^{2} \vec{j}=\cos \alpha \vec{i}+\sin \alpha \vec{j}
$$

Simply take $\theta=\alpha$.

Case II $\quad u^{2}<0 \Rightarrow u^{2}=-\left|u^{2}\right|=-\sin \alpha$

$$
\begin{aligned}
\vec{u} & =\cos \alpha \vec{i}-\sin \alpha \vec{j} \\
& =\cos (-\alpha) \vec{i}+\sin (-\alpha) \vec{j} \\
& =\cos (-\alpha+2 \pi) \vec{i}+\sin (-\alpha+2 \pi) \vec{j}
\end{aligned}
$$

Take $\theta=-\alpha+2 \pi$
Since \vec{u} is arbitrarily given, we have the following:
Conclusion $\alpha:=$ angle $(\vec{u}, \vec{i})=U^{\prime}$, then any unit vector \vec{u} in the plane takes the form $\vec{u}=\cos \theta \vec{i}+\sin \theta \vec{j}$ where

$$
\theta=\left\{\begin{array}{ll}
\alpha & \text { if } u^{2} \geq 0
\end{array} \text { (otherwise) } \begin{array}{ll}
-\alpha+2 \pi & \text { otherwise }
\end{array}\right.
$$

3. Direction angles and direction cosines The direction angles α, β, and γ of a vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ are defined as follows: α is the angle between \mathbf{v} and the positive x-axis $(0 \leq \alpha \leq \pi)$ β is the angle between \mathbf{v} and the positive y-axis $(0 \leq \beta \leq \pi)$ γ is the angle between \mathbf{v} and the positive z-axis $(0 \leq \gamma \leq \pi)$.

a. Show that

$$
\cos \alpha=\frac{a}{|\mathbf{v}|}, \quad \cos \beta=\frac{b}{|\mathbf{v}|}, \quad \cos \gamma=\frac{c}{|\mathbf{v}|}
$$

and $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. These cosines are called the direction cosines of \mathbf{v}.
b. Unit vectors are built from direction cosines Show that if $\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is a unit vector, then a, b, and c are the direction cosines of \mathbf{v}.

If a. Just compute the angles between \vec{V} and $\vec{i}, \vec{j}, \vec{k}$

$$
\begin{aligned}
& \cos \alpha=\frac{\vec{v} \cdot \vec{i}}{|\vec{v}||\vec{i}|}=\frac{a}{|\vec{v}|}, \\
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\left(\frac{a}{|\vec{v}|}\right)^{2}+\left(\frac{b}{|\vec{v}|}\right)^{2}+\left(\frac{c}{|\vec{v}|}\right)^{2} \\
&=\frac{a^{2}+b^{2}+c^{2}}{|\vec{v}|^{2}} \vec{v} \cdot \vec{v} \\
&=1
\end{aligned}
$$

b. From part a and the condition $|\vec{v}|=1$,

$$
\cos \alpha=\frac{a}{|\vec{v}|}=a, \cos \beta=b, \cos \gamma=c
$$

4. Using the definition of the projection of \mathbf{u} onto \mathbf{v}, show by direct calculation that $\left(\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right) \cdot \operatorname{proj}_{\mathbf{v}} \mathbf{u}=0$.

$$
\vec{u}-\operatorname{proj}_{\vec{v}} \vec{u} \perp \operatorname{proj}_{\vec{v}} \vec{u}
$$

Pf Recall the definition

$$
\begin{aligned}
& \operatorname{proj}_{\vec{v}} \vec{u}:=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}} \vec{v} \\
& \left(\vec{u}-\operatorname{proj}_{\vec{v}} \vec{u}\right) \cdot \operatorname{proj}_{\vec{v}} \vec{u}=\vec{u} \cdot \operatorname{proj}_{\vec{v}} \vec{u}-\left|\operatorname{proj}_{\vec{v}} \vec{u}\right|^{2} \\
& =\vec{u} \cdot\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}} \vec{v}\right)-\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}}\right)^{2}|\vec{v}|^{2} \\
& =\frac{(\vec{u} \cdot \vec{v})^{2}}{|\vec{v}|^{2}}-\frac{(\vec{u} \cdot \vec{v})^{2}}{|\vec{v}|^{4}}|\vec{v}|^{2}=0
\end{aligned}
$$

