MATH2010 Advanced Calculus I

Solution to Homework 2

§12.5 Q33

Solution.

The line passes through $P(0,0,0)$ parallel to $\mathbf{v}=4 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.
Let $S=(0,0,12)$.
$\overrightarrow{P S}=(0-0) \mathbf{i}+(0-0) \mathbf{j}+(12-0) \mathbf{k}=12 \mathbf{k}$
$\overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 12 \\ 4 & -2 & 2\end{array}\right|=24 \mathbf{i}+48 \mathbf{j}$
Distance $=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}=\frac{\sqrt{24^{2}+48^{2}}}{\sqrt{4^{2}+2^{2}+2^{2}}}=\frac{24 \sqrt{5}}{2 \sqrt{6}}=2 \sqrt{30}$

§12.5 Q39

Solution.

$\mathbf{n}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ normal to the plane.
$P(13,0,0)$ is a point on the plane.
Let $S=(2,-3,4)$.
$\overrightarrow{P S}=(2-13) \mathbf{i}+(-3-0) \mathbf{j}+(4-0) \mathbf{k}=-11 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$
$|\mathbf{n}|=\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{9}=3$
Distance $=\left|\overrightarrow{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\left|\frac{-11-6+8}{3}\right|=|-3|=3$

§12.5 Q57

Solution.

$\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|=-\mathbf{i}+\mathbf{j}$ parallel to the line of intersection.
Consider $x=1$. Then $y=1$ and $z=-1$. Hence, $(1,1,-1)$ is a point on the line of intersection. Therefore, the line is
$x=1-t, y=1+t, z=-1$.

§13.1 Q19

Solution.

$\mathbf{r}\left(t_{0}\right)=\mathbf{r}(0)=-\mathbf{j}+\mathbf{k}$
$\mathbf{v}(t)=(\cos t) \mathbf{i}+(2 t+\sin t) \mathbf{j}+\left(e^{t}\right) \mathbf{k}$
$\mathbf{v}\left(t_{0}\right)=\mathbf{v}(0)=\mathbf{i}+\mathbf{k}$
Therefore, the tangent line is $x=t, y=-1, z=1+t$.

§13.3 Q2

Solution.
$\mathbf{v}=(12 \cos 2 t) \mathbf{i}+(-12 \sin 2 t) \mathbf{j}+(5) \mathbf{k}$
$|\mathbf{v}|=\sqrt{(12 \cos 2 t)^{2}+(-12 \sin 2 t)^{2}+5^{2}}=\sqrt{12^{2}+5^{2}}=13$
Hence, the unit tangent vector is
$\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\left(\frac{12}{13} \cos 2 t\right) \mathbf{i}-\left(\frac{12}{13} \sin 2 t\right) \mathbf{j}+\frac{5}{13} \mathbf{k}$
Length $=\int_{0}^{\pi}|\mathbf{v}| d t=\int_{0}^{\pi} 13 d t=\left.13 t\right|_{0} ^{\pi}=13 \pi$

§13.3 Q18

Solution.

a. $\mathbf{v}=(-4 \sin 4 t) \mathbf{i}+(4 \cos 4 t) \mathbf{j}+4 \mathbf{k}$

$$
|\mathbf{v}|=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}
$$

Length $=\int_{0}^{\pi / 2}|\mathbf{v}| d t=\int_{0}^{\pi / 2} 4 \sqrt{2} d t=\left.4 \sqrt{2} t\right|_{0} ^{\pi / 2}=2 \sqrt{2} \pi$
b. $\mathbf{v}=\left(-\frac{1}{2} \sin (t / 2)\right) \mathbf{i}+\left(\frac{1}{2} \cos (t / 2)\right) \mathbf{j}+(1 / 2) \mathbf{k}$
$|\mathbf{v}|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{2}}{2}$
Length $=\int_{0}^{4 \pi}|\mathbf{v}| d t=\int_{0}^{4 \pi} \frac{\sqrt{2}}{2} d t=\left.\frac{\sqrt{2}}{2} t\right|_{0} ^{4 \pi}=2 \sqrt{2} \pi$
c. $\mathbf{v}=(-\sin t) \mathbf{i}-(\cos t) \mathbf{j}-\mathbf{k}$
$|\mathbf{v}|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Length $=\int_{-2 \pi}^{0}|\mathbf{v}| d t=\int_{-2 \pi}^{0} \sqrt{2} d t=\left.\sqrt{2} t\right|_{-2 \pi} ^{0}=0-(-2 \sqrt{2} \pi)=2 \sqrt{2} \pi$

The length computed using all these parametrization are the same as Example 1.

§11.3 Q27

Solution.

The equivalent Cartesian equation is $x=2$.
The graph is a vertical line through $x=2$ on the x-axis.

§11.3 Q59

Solution.
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

$$
\begin{aligned}
& \frac{r^{2} \cos ^{2} \theta}{9}+\frac{r^{2} \sin ^{2} \theta}{4}=1 \\
& 4 r^{2} \cos ^{2} \theta+9 r^{2} \sin ^{2} \theta=36
\end{aligned}
$$

§11.4 Q6

Solution.

1. Symmetry about the x-axis:

If (r, θ) on the graph, $r=1+2 \sin \theta$.
$1+2 \sin (-\theta)=1-2 \sin \theta \neq r$, hence $(r,-\theta)$ is not on the graph.
$1+2 \sin (\pi-\theta)=1+2 \sin \theta=r \neq-r$, hence $(-r, \pi-\theta)$ is not on the graph.
Therefore, no symmetry about the x-axis.
2. Symmetry about the y-axis:

If (r, θ) on the graph, $r=1+2 \sin \theta$.
$1+2 \sin (\pi-\theta)=1+2 \sin \theta=r$, hence $(r, \pi-\theta)$ is on the graph.
Therefore, the curve is symmetric about the y-axis.
3. Hence, no symmetry about the origin.

§11.4 Q19

Solution.

$r=\sin 2 \theta$
$r^{\prime}=2 \cos 2 \theta$
$\left.\frac{d y}{d x}\right|_{(r, \theta)}=\frac{r^{\prime} \sin \theta+r \cos \theta}{r^{\prime} \cos \theta-r \sin \theta}$
Hence,
at $\theta=\pi / 4$:
$r=\sin (\pi / 2)=1, r^{\prime}=2 \cos (\pi / 2)=0$
Slope $=\left.\frac{d y}{d x}\right|_{(1, \pi / 4)}=\frac{\cos (\pi / 4)}{-\sin (\pi / 4)}=-1$
at $\theta=-\pi / 4$:
$r=\sin (-\pi / 2)=-1, r^{\prime}=2 \cos (-\pi / 2)=0$
Slope $=\left.\frac{d y}{d x}\right|_{(-1,-\pi / 4)}=\frac{-\cos (-\pi / 4)}{\sin (-\pi / 4)}=1$
at $\theta=3 \pi / 4$:
$r=\sin (3 \pi / 2)=-1, r^{\prime}=2 \cos (3 \pi / 2)=0$
Slope $=\left.\frac{d y}{d x}\right|_{(-1,3 \pi / 4)}=\frac{-\cos (3 \pi / 4)}{\sin (3 \pi / 4)}=1$
at $\theta=-3 \pi / 4$:
$r=\sin (-3 \pi / 2)=1, r^{\prime}=2 \cos (-3 \pi / 2)=0$
Slope $=\left.\frac{d y}{d x}\right|_{(1,-3 \pi / 4)}=\frac{\cos (-3 \pi / 4)}{-\sin (-3 \pi / 4)}=-1$

