MATH2010 Advanced Calculus I

Solution to Homework 1

$\S 12.3$ Q6

Solution.

a. $\mathbf{v} \cdot \mathbf{u}=(-1)(\sqrt{2})+(1)(\sqrt{3})+(0)(2)=\sqrt{3}-\sqrt{2}$
$|\mathbf{v}|=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$
$|\mathbf{u}|=\sqrt{(\sqrt{2})^{2}+(\sqrt{3})^{2}+2^{2}}=\sqrt{9}=3$
b. $\cos \theta=\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}||\mathbf{u}|}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2})(3)}=\frac{\sqrt{6}-2}{6}$
c. $|\mathbf{u}| \cos \theta=3\left(\frac{\sqrt{6}-2}{6}\right)=\frac{\sqrt{6}-2}{2}$
d. $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=(|\mathbf{u}| \cos \theta) \frac{\mathbf{v}}{|\mathbf{v}|}=\left(\frac{\sqrt{6}-2}{2}\right) \frac{-\mathbf{i}+\mathbf{j}}{\sqrt{2}}=\frac{\sqrt{2}-\sqrt{3}}{2} \mathbf{i}+\frac{\sqrt{3}-\sqrt{2}}{2} \mathbf{j}$

§12.3 Q13

Solution.

$\overrightarrow{A B}=\langle 2-(-1), 1-0\rangle=\langle 3,1\rangle$
$\overrightarrow{A C}=\langle 1-(-1),-2-0\rangle=\langle 2,-2\rangle$
$\angle A=\cos ^{-1} \frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\cos ^{-1} \frac{(3)(2)+(1)(-2)}{\left(\sqrt{3^{2}+1^{2}}\right)\left(\sqrt{2^{2}+(-2)^{2}}\right)}=\cos ^{-1} \frac{4}{\sqrt{10} \sqrt{8}}=\cos ^{-1} \frac{1}{\sqrt{5}}=1.11 \mathrm{rad}$
$\vec{B} \vec{C}=\langle 1-2,-2-1\rangle=\langle-1,-3\rangle$
$\overrightarrow{B A}=-\overrightarrow{A B}=\langle-3,-1\rangle$
$\angle B=\cos ^{-1} \frac{\vec{B} \vec{C} \cdot \overrightarrow{B A}}{|\overrightarrow{B C}||\overrightarrow{B A}|}=\cos ^{-1} \frac{(-1)(-3)+(-3)(-1)}{(\sqrt{10})(\sqrt{10})}=\cos ^{-1} \frac{6}{10}=\cos ^{-1} \frac{3}{5}=0.93 \mathrm{rad}$
$\angle C=\pi-(\angle A+\angle B)=\pi-\cos ^{-1} \frac{1}{\sqrt{5}}-\cos ^{-1} \frac{3}{5}=1.11 \mathrm{rad}$

§12.3 Q28

Solution.

No, the same rule does not hold for dot product.
Let $\mathbf{u}=\langle 1,1\rangle \neq \mathbf{0}, \mathbf{v}_{\mathbf{1}}=\langle 1,0\rangle, \mathbf{v}_{\mathbf{2}}=\langle 0,1\rangle$.
Then, $\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}=1, \mathbf{u} \cdot \mathbf{v}_{\mathbf{2}}=1$.
Hence, $\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}=\mathbf{u} \cdot \mathbf{v}_{\mathbf{2}}$ but $\mathbf{v}_{\mathbf{1}} \neq \mathbf{v}_{\mathbf{2}}$.

§12.4 Q2

Solution.

$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 0 \\ -1 & 1 & 0\end{array}\right|=\left|\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}2 & 0 \\ -1 & 0\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right| \mathbf{k}=0 \mathbf{i}-0 \mathbf{j}+5 \mathbf{k}=5 \mathbf{k}$
For $\mathbf{u} \times \mathbf{v}$, the length is 5 and direction is \mathbf{k}.
$\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})=-5 \mathbf{k}$
For $\mathbf{v} \times \mathbf{u}$, the length is 5 and direction is $-\mathbf{k}$.

§12.4 Q11

Solution.

$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right|=\left|\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right| \mathbf{k}=\mathbf{i}-\mathbf{j}+\mathbf{k}$

§12.4 Q21

Solution.

$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\left|\begin{array}{ccc}2 & 1 & 0 \\ 2 & -1 & 1 \\ 1 & 0 & 2\end{array}\right|=(2)(-2)-(1)(4-1)=-7$
$(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0\end{array}\right|=(2)(-2)-(1)(4-1)=-7$
$(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}=\left|\begin{array}{ccc}1 & 0 & 2 \\ 2 & 1 & 0 \\ 2 & -1 & 1\end{array}\right|=(1)(1)+(2)(-2-2)=-7$

Hence, $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$.
Volume $=|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|=7$

§12.5 Q3

Solution.

$\vec{P} \vec{Q}=(3-(-2)) \mathbf{i}+(5-0) \mathbf{j}+(-2-3) \mathbf{k}=5 \mathbf{i}+5 \mathbf{j}-5 \mathbf{k}=5(\mathbf{i}+\mathbf{j}-\mathbf{k})$
Hence, the line is parallel to $\mathbf{i}+\mathbf{j}-\mathbf{k}$.
Since the line is passing through $P(-2,0,3)$, a parametrization of the line is $x=-2+t, y=t, z=3-t,-\infty<t<\infty$.

§12.5 Q16

Solution.

Let $P=(1,1,0), Q=(1,1,1)$.
$\overrightarrow{P Q}=(1-1) \mathbf{i}+(1-1) \mathbf{j}+(1-0) \mathbf{k}=\mathbf{k}$
Hence, the line is parallel to \mathbf{k}.
A parametrization of the line thought P and Q is $x=1, y=1, z=0+t=t,-\infty<t<\infty$.
The line passes through $P(1,1,0)$ at $t=0$ and $Q(1,1,1)$ at $t=1$.
Therefore, a parametrization for the line segment is $x=1, y=1, z=t, 0 \leq t \leq 1$.

§12.5 Q22

Solution.

The plane $3 x+y+z=7$ is normal to $\mathbf{n}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}$.
Hence, the plane through $(1,-1,3)$ parallel to the plane $3 x+y+z=7$ is normal to $\mathbf{n}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}$.
Therefore, the plane is
$3(x-1)+1(y-(-1))+1(z-3)=0$
$3 x-3+y+1+z-3=0$
$3 x+y+z=5$

§12.5 Q24

Solution.

$(1-2,5-4,7-5)=(-1,1,2)$
$(-1-2,6-4,8-5)=(-3,2,3)$
$\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 2 \\ -3 & 2 & 3\end{array}\right|=(3-4) \mathbf{i}-(-3-(-6)) \mathbf{j}+(-2-(-3)) \mathbf{k}=-\mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is normal to the plane.
Since the plane passes through $(2,4,5)$ and normal to $-\mathbf{i}-3 \mathbf{j}+\mathbf{k}$, the plane is
$(-1)(x-2)+(-3)(y-4)+(1)(z-5)=0$
$-x+2-3 y+12+z-5=0$
$-x-3 y+z+9=0$
$x+3 y-z=9$

