It (Implicit Function Theorem)
Let $\Omega \subseteq \mathbb{R}^{n+k}$ be open, $\vec{F}: \Omega \rightarrow \mathbb{R}^{k}, \vec{F}=\left[\begin{array}{c}F_{1} \\ \vdots \\ F_{k}\end{array}\right]$ be \underline{C}^{\prime} Denote $\vec{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ \& $\vec{y}=\left(y_{1}, \cdots, y_{k}\right) \in \mathbb{R}^{k}$.

$$
\vec{F}(\vec{x}, \vec{y})=\left[\begin{array}{c}
F_{1}(\vec{x}, \vec{y}) \\
\vdots \\
F_{k}(\vec{x}, \vec{y})
\end{array}\right]=\left[\begin{array}{c}
F_{1}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right) \\
\vdots \\
F_{k}\left(x_{1}, \cdots, x_{n}, y_{1}, \ldots, y_{k}\right)
\end{array}\right]
$$

Suppre $(\vec{a}, \vec{b}) \in \Omega$, where $\vec{a} \in \mathbb{R}^{n}, \vec{b} \in \mathbb{R}^{k}$ such that

$$
\vec{F}(\vec{a}, \vec{b})=\vec{c}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right] \in \mathbb{R}^{k}
$$

and the $k x k$ matrix

$$
\left[\begin{array}{c}
\left.\frac{\partial F_{i}}{\partial y_{j}}(\vec{a}, \vec{b})\right]_{1 \leqslant i, j \leqslant k}
\end{array}=\left[\begin{array}{ccc}
\frac{\partial F_{1}}{\partial y_{1}}(\vec{a}, \dot{b}) & \cdots & \frac{\partial F_{1}}{\partial y_{k}}(\vec{a}, \vec{b}) \\
\vdots & & \vdots \\
\frac{\partial F_{k}}{\partial y_{1}}(\vec{a}, \vec{b}) & \cdots & \frac{\partial F_{k}}{\partial y_{k}}(\vec{a}, \vec{b})
\end{array}\right]\right.
$$

is invertible (ie. $\operatorname{det}\left[\frac{\partial F_{i}}{\partial y_{j}}(\vec{a}, \vec{b})\right] \neq 0$)
Then there are open sets $U \subseteq \mathbb{R}^{n}$ containing \vec{a}, and $V \subseteq \mathbb{R}^{k}$ containing \vec{b} such that there exists a unique function $\vec{\varphi}: U \rightarrow V$ with $\vec{\varphi}(\vec{a})=\vec{b}$ and

$$
\stackrel{\rightharpoonup}{F}(\vec{x}, \vec{\varphi}(\vec{x}))=\vec{C}, \forall \vec{x} \in U
$$

Moreover, $\vec{\varphi}$ is C^{\prime} and (by implicit differentiation)

$$
\left[\frac{\partial \varphi_{j}}{\partial x_{l}}(\vec{x})\right]_{k \times n}=-\left[\frac{\partial F_{i}}{\partial y_{j}}(\vec{x}, \vec{\varphi}(\vec{x})]_{k \times k}^{-1}\left[\frac{\partial F_{i}}{\partial x_{l}}(\vec{x}, \vec{\varphi}(\vec{x}))\right]_{k \times n}\right.
$$

(Pf: in MATH 3060)

Special crease (A) : $k=1$ (1 constrañt)

$$
\begin{aligned}
& F: \Omega \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R} \\
& F(\vec{x}, \vec{y})=F\left(x_{1}, \cdots, x_{n}, y\right)=c \quad(1 \text { constraint })
\end{aligned}
$$

Suppose $\vec{a}=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n}, \quad b \in \mathbb{R}$ s.t

$$
F\left(a_{1}, \cdots, a_{n}, b\right)=c
$$

IF T If $\frac{\partial F}{\partial y}\left(a_{1}, \cdots, a_{n}, b\right) \neq 0$,
then $\exists U^{\text {open } \subseteq \mathbb{R}^{n}}$ sit. $\left(a, \cdots, a_{n}\right) \in U$ and

$$
V^{\text {open }} \subseteq \mathbb{R} \quad \text { s.t. } \quad b \in V
$$

and \exists unique $C^{\prime} \varphi: U \rightarrow V$ sit. $\varphi\left(a_{1}, \cdots, a_{n}\right)=b \&$

$$
F\left(x_{1}, \cdots, x_{n}, \varphi\left(x_{1}, \cdots, x_{n}\right)\right)=c, \quad \forall\left(x_{1}, \cdots, x_{n}\right) \in U
$$

$$
\binom{\text { i.e. } y=\varphi\left(x_{1}, \cdots, x_{n}\right) \text { solves the constraint } F\left(x_{1}, \cdots, x_{n}, y\right)=c}{\text { "near" }\left(a_{1}, \cdots, a_{n}, b\right)}
$$

(Moreover, $\frac{\partial \varphi}{\partial x_{i}}$ can be calculated using implicit differentiation)

In eg2: $\quad x^{2}+y^{2}+z^{2}=2 \quad$ solve $z=z(x, y)$

Special care (B) $\quad n=1, k=2 \quad(2$-constraints)

$$
\begin{aligned}
& \vec{F}: \Omega \subseteq \mathbb{R}^{1+2} \longrightarrow \mathbb{R}^{2} \\
& \vec{F}\left(x, y_{1}, y_{2}\right)=\left[\begin{array}{l}
F_{1}\left(x, y_{1}, y_{2}\right) \\
F_{2}\left(x, y_{1}, y_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\vec{C}
\end{aligned}
$$

Suppre $\left(a, b_{1}, b_{2}\right)$ satisfies the constraints $\vec{F}\left(a, b_{1}, b_{2}\right)=\vec{C}$ then IFT means
if $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}\end{array}\right]\left(a, b_{1}, b_{2}\right)$ is invertible (is. $\operatorname{det} \neq 0$)
then $\exists y_{1}=\varphi_{1}(x)$ \& $y_{2}=\varphi_{2}(x)$ "near" $\left(a, b_{1}, b_{2}\right)$
solving the constraints (locally)

$$
\begin{aligned}
& \left\{\begin{array}{l}
F_{1}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{1} \\
F_{2}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{2}
\end{array}\right. \\
& \& \quad\left\{\begin{array}{l}
\varphi_{1}(a)=b_{1} \\
\varphi_{2}(a)=b_{2}
\end{array}\right.
\end{aligned}
$$

eg3 $\left\{\begin{array}{lc}x^{2}+y^{2}+z^{2}=2 \\ x+z=1 & \text { Solve fa } y=y(x), z=z(x) \text { ? } \\ \text { near }(0,1,1)\end{array}\right.$

By IFT
$\exists y=y(x), z=z(x)$ "near" $(0,1,1)$ st.

$$
\begin{aligned}
& \left\{\begin{array}{l}
g(x, y(x), z(x))=2 \\
h(x, y(x), z(x))=1 \\
y(0)=1 \\
z(0)=1
\end{array}\right. \\
& \left(\left\{\begin{array}{l}
x^{2}+(y(x))^{2}+(z(x))^{2}=2 \\
x+z(x)=1
\end{array}\right)\right.
\end{aligned}
$$

Remark: $\frac{d y}{d x},\left.\frac{d z}{d x}\right|_{x=0}$ cau be calculated by inglicit differentiaticn

By IFT

$$
\begin{aligned}
& \exists y_{1}=\varphi_{1}(x), y_{2}=\varphi_{2}(x) \text { "near" } \\
& \left(a, b_{1}, b_{2}\right) \text { s.t. } \\
& \left\{\begin{array}{l}
F_{1}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{1} \\
F_{2}\left(x, \varphi_{1}(x), \varphi_{2}(x)\right)=c_{2} \\
\varphi_{1}(a)=b_{1} \\
\varphi_{2}(a)=b_{2}
\end{array}\right.
\end{aligned}
$$

Remark: $\frac{d \varphi_{1}}{d x},\left.\frac{d \varphi_{2}}{d x}\right|_{x=a}$ caube calculated by implicit differentiaticn
eg: Consider the constraints

$$
\left\{\begin{aligned}
x z+\sin \left(y z-x^{2}\right) & =8 \\
x+4 y+3 z & =18
\end{aligned}\right.
$$

$(2,1,4)$ is a solution.
Can we solve 2 of the variables as functions of the remaining variable?
Sole:

$$
\vec{F}(x, y, z)=\left[\begin{array}{c}
F_{1}(x, y, z) \\
F_{2}(x, y, z)
\end{array}\right]=\left[\begin{array}{c}
x z+\sin \left(y z-x^{2}\right) \\
x+4 y+3 z
\end{array}\right]
$$

$$
\begin{aligned}
& \overrightarrow{D F}=\left[\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\
\frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}
\end{array}\right] \\
&=\left[\begin{array}{ccc}
z-2 x \cos \left(y z-x^{2}\right) & z \cos \left(y z-x^{2}\right) & x+y \cos \left(y z-x^{2}\right) \\
1 & 4
\end{array}\right] \\
& \Rightarrow \\
& \stackrel{\rightharpoonup}{D F}(2,1,4)=\left[\begin{array}{ccc}
0 & 4 & 3 \\
1 & 4 & 3
\end{array}\right] \text { (check!) }
\end{aligned}
$$

$\begin{array}{cc}\operatorname{det}\left(\begin{array}{cc}x & y \\ \downarrow & \downarrow \\ 0 & 4 \\ 1 & 4\end{array}\right) & \operatorname{det}\left(\begin{array}{cc}\downarrow & z \\ \downarrow & \downarrow \\ 0 & 3 \\ 1 & 3\end{array}\right)\end{array} \quad \operatorname{det}\left(\begin{array}{cc}\downarrow & z \\ 4 & \downarrow \\ 4 & 3\end{array}\right)$

IF \Rightarrow - x, y can be solved as (diff.) functions of z near $(2,1,4)$

- x, z can be solved as (diff.) functions of y near ($2,1,4$)
- No conclusions on whether y, z can be solved as (diff.) functions of x near $(2,1,4)$
$\left(\begin{array}{c}\text { In fact, implicit diff. } \Rightarrow \text { if } y(x), z(x) \text { exists (l diff) } \\ \text { then }\left[\begin{array}{ll}4 & 3 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]=-\left[\begin{array}{l}0 \\ 1\end{array}\right] \text { which is a contradiction.) }\end{array}\right.$

The (Inverse Function Theneme)
Let $\vec{f}: \Omega \longrightarrow \mathbb{R}^{n}$ be $C^{\prime}, \quad\left(\Omega \subset \mathbb{R}^{n}\right.$, open $)$
Suppne $D \vec{f}(\vec{a})$ is invertible ($n \times n$ matrix)
Then \exists open sets $U \subseteq \mathbb{R}^{n}$ containing \vec{a},

$$
V \subseteq \mathbb{R}^{n} \text { containing } \vec{b}=\vec{f}(\vec{a})
$$

such that \exists a unique function
$\overrightarrow{9}: V \rightarrow U$ with

$$
\vec{g}(\vec{b})=\vec{a}
$$

satisfying $\left.\left\{\begin{array}{l}\vec{g}(\vec{f}(\vec{x}))=\vec{x}, \quad \forall \vec{x} \in U \\ \vec{f}(\vec{g}(\vec{y}))=\vec{y}, \quad \forall \vec{y} \in V\end{array} \text { (ie. } \vec{g}=|\vec{f}|{ }_{U}\right)^{-1}\right)$
macover, \vec{g} is C^{\prime} and

$$
D \vec{g}(\vec{y})=[D \vec{f}(\vec{g}(\vec{y}))]^{-1}, \forall \vec{y} \in V
$$

(Pf: MATH 3060)
Remark: $\vec{g}=\left(\left.\vec{f}\right|_{U}\right)^{-1}$ is called a local inverse of \vec{f} at \vec{a}.
eg: $\vec{f}=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad \vec{f}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x^{2}-y^{2} \\ 2 x y\end{array}\right]$
Clearly, \vec{f} is not globally invertible: $\vec{f}\left(\left[\begin{array}{c}x \\ -y\end{array}\right]\right)=\vec{f}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$ (2 to 1)

Local inverse?
To check this: $\quad \overrightarrow{D f}=\left[\begin{array}{cc}2 x & -2 y \\ 2 y & 2 x\end{array}\right]$

$$
\operatorname{det} D \vec{f}=4\left(x^{2}+y^{2}\right) \geqslant 0 \quad{ }^{\prime \prime}=0^{\prime \prime} \Leftrightarrow(x, y)=(0,0)
$$

$F_{\Omega}(x, y) \neq(0,0)$, IF T (Inverse Function The) \Rightarrow \vec{f} has a local inverse at $(x, y) \quad(\neq(0,0))$

Fer instance, let $(x, y)=(1,-1) \&$
$\vec{g}(u, u)$ be a local inverse of $f(x, y)$

$$
\text { "near" }(x, y)=(1,-1)
$$

(where $\left\{\begin{array}{l}u=x^{2}-y^{2} \\ v=2 x y\end{array}\right)$

$$
\begin{aligned}
& \vec{f}(1,-1)=(0,-2) \Rightarrow \vec{g}(0,-2)=(1,-1) \\
& \begin{aligned}
D \vec{g}(0,-2) & =(D \vec{f}(1,-1))^{-1}=\left(\left[\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right](1,-1)\right)^{-1} \\
& =\left[\begin{array}{rr}
2 & 2 \\
-2 & 2
\end{array}\right]^{-1}=\frac{1}{4}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \text { (check! }
\end{aligned}
\end{aligned}
$$

$\frac{\text { Explicit calculation of } \vec{g}(u, v) \text { : }}{2}$

$$
\left\{\begin{array}{l}
u=x^{2}-y^{2} \\
v=2 x y
\end{array}\right.
$$

near $(x, y)=(1,-1) \Rightarrow x \neq 0 \Rightarrow y=\frac{u}{2 x}$

$$
\Rightarrow \quad u=x^{2}-\left(\frac{v}{2 x}\right)^{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad 4 x^{4}-4 u x^{2}-v^{2}=0 \\
& \Rightarrow \quad x^{2}=\frac{4 u \pm \sqrt{(-4 u)^{2}-4 \cdot 4\left(-v^{2}\right)}}{8} \\
&=\frac{u \pm \sqrt{u^{2}+v^{2}}}{2}
\end{aligned}
$$

Put $(x, y)=(1,-1) \Rightarrow(u, v)=(0,-2)$

$$
1^{2}=\frac{0 \pm \sqrt{0^{2}+(-2)^{2}}}{2}
$$

\Rightarrow " -" should be rejected

$$
\begin{aligned}
& \Rightarrow \quad x^{2}=\frac{u+\sqrt{u^{2}+u^{2}}}{2} \\
& \Rightarrow \quad x=\sqrt{\frac{u+\sqrt{u^{2}+u^{2}}}{2}} \quad\binom{\text { "_ "rejected }}{\text { as }}
\end{aligned}
$$

t hence $y=\frac{2 v}{x}=\frac{2 \sqrt{2} v}{\sqrt{u+\sqrt{u^{2}+v^{2}}}}$

$$
g(u, v)=\left(\sqrt{\frac{u+\sqrt{u^{2}+u^{2}}}{2}}, \frac{2 \sqrt{2} v}{\sqrt{u+\sqrt{u^{2}+v^{2}}}}\right) \text { near }(0,-2)
$$

Remark: In Implicit Function Thy \& Inverse Function Thine, we weed to check get. of Jacobian matrix (a sub matrix) is nonzero. In case that the de $=0$, we have No conclusion:
eg: Implicit Function The

$F(x, y)=x^{2}-y^{2}=0$

$$
\frac{\partial F}{\partial y}=-\left.2 y\right|_{(0,0)}=0
$$

y is not locally a function of x near $(0,0)$

$$
\begin{aligned}
& F(x, y)=x^{3}-y^{3}=0 \\
& \frac{\partial F}{\partial y}=-\left.3 y^{2}\right|_{(0,0)}=0
\end{aligned}
$$

y is locally a function of x near $(0,0)$

Thnerse function Tho

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(0)=0
\end{aligned}
$$

Not adjective near $x=0$

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(0)=0
\end{aligned}
$$

$g(y)=y^{1 / 3}$ is a local inverse near $x=0$

