eg $2 S: x^{2}+y^{2}+z^{2}=2$ in \mathbb{R}^{3}
Call we solve $z=h(x, y)$ near $(0,1,1)$?
Can we solve $x=k(y, z)$ near $(0,1,1)$?
Observations:
st question: if $z=h(x, y)$ exists, then

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \partial _ { x } (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 } \\
{ \partial y (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
\frac{\partial z}{\partial x}=-\frac{x}{z} & \text { proundod } \\
\frac{\partial z}{\partial y}=-\frac{y}{z} & \text { that } z \neq 0
\end{array}\right.\right. \\
& \Rightarrow \frac{\partial z}{\partial x}(0,1,1)=0, \frac{\partial z}{\partial y}(0,1,1)=-1
\end{aligned}
$$

At least, there is no contradiction \& we have a hope to solve it!
$2^{\text {nd }}$ question: if $x=k(y, z)$ exists

$$
\left\{\begin{array} { l }
{ \partial _ { y } (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 } \\
{ \partial z (x ^ { 2 } + y ^ { 2 } + z ^ { 2 }) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x \frac{\partial x}{\partial y}+2 y=0 \\
2 x \frac{\partial x}{\partial z}+2 z=0
\end{array}\right.\right.
$$

At the point $(0,1,1)$, we have $\left\{\begin{array}{l}0+2=0 \\ 0+2=0\end{array}\right.$
which is a contradiction.
So there exists NO $x=k(y, z)$ (which is diffenentible) at near the point $(x, y, z)=(0,1,1)$.

Genoral situation (iu 3-variables)

$$
F(x, y, z)=c
$$

If $z=z(x, y)$ (differeatiable), then inplicit differontiation

If $F(\vec{a})=C$ \& $\frac{\partial F}{\partial z}(\vec{a}) \neq 0$, then

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{\partial z}{\partial x} \\
\frac{\partial z}{\partial y}
\end{array}\right]=-\frac{1}{\frac{\partial F}{\partial z}(\vec{a})}\left[\begin{array}{l}
\frac{\partial F}{\partial x}(\vec{a}) \\
\frac{\partial F}{\partial y}(\vec{a})
\end{array}\right]} \\
& \left(\text { at }\left(x_{0}, y_{0}\right) \text { if } \vec{a}=\left(x_{0}, y_{0}, z_{0}\right)\right)
\end{aligned}
$$

eg 3 (Multiple Cousstranits)

$$
e\left\{\begin{array}{lc}
x^{2}+y^{2}+z^{2}=2 \\
x+z=1 & \binom{3 \text {-variables, 2 equeations }}{\text { expect } \varphi \text { is "1-diun" }}
\end{array}\right.
$$

Question: Can we solve $\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}y(x) \\ z(x)\end{array}\right]$?

Observation: If we tuque $y=y(x) \& z=z(x)$, differentiable
then

$$
\begin{align*}
& \frac{d}{d x}\left(x^{2}+(y(x))^{2}+(z(x))^{2}\right)=0 \\
& \Rightarrow \quad 2 x+2 y \frac{d y}{d x}+2 z \frac{d z}{d x}=0 \\
& \Rightarrow \quad y \frac{d y}{d x}+z \frac{d z}{d x}=-x \tag{ـ}
\end{align*}
$$

and $\quad \frac{d}{d x}(x+z(x))=0$

$$
\begin{aligned}
& \Rightarrow \\
\therefore & 1+\frac{d z}{d x}=0 \\
\therefore & {\left[\begin{array}{ll}
y & z \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{d y}{d x} \\
\frac{d z}{d x}
\end{array}\right]=\left[\begin{array}{c}
-x \\
-1
\end{array}\right] }
\end{aligned}
$$

If $\operatorname{det}\left[\begin{array}{cc}y & z \\ 0 & 1\end{array}\right] \neq 0$, then one can solve (maiquely) $f u\left[\begin{array}{c}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]$.
So we have a tope to the existence of $\left[\begin{array}{l}y \\ z\end{array}\right]=\left[\begin{array}{l}y(x) \\ z(x)\end{array}\right]$.
Fr üstance $(x, y, z)=(0,1,1)$ (one)

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=1 \neq 0 \\
& \Rightarrow {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{d y}{d x} \\
\frac{d z}{d x}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad \text { is solvable } } \\
& \text { and } \quad\left[\begin{array}{l}
\frac{d y}{d x} \\
\frac{d z}{d x}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \stackrel{\text { (check) }}{=}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

In general, given $\quad \zeta=\left\{\begin{array}{l}F_{1}(x, y, z)=C_{1} \\ F_{2}(x, y, z)=C_{2}\end{array}\right.$

$$
\left(\vec{F}=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right], \vec{F}(\vec{x})=\vec{C}, \quad \vec{F}=\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\right)
$$

Suppae $F_{i}(a, b, c)=C_{i}, i=1,2$
Assume $y=y(x), z=z(x)$ near (a, b, c) (diff.)
$\begin{aligned} &\binom{\text { Implicit }}{\text { differentiation }}\left\{\begin{array}{l}\frac{d}{d x} F_{1}(x, y(x), z(x))=0 \\ \frac{d}{d x} F_{2}(x, y(x), z(x))=0\end{array}\right. \\ & \Rightarrow\left\{\begin{array}{l}\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} \frac{d y}{d x}+\frac{\partial F_{1}}{\partial z} \frac{d z}{d x}=0 \\ \frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} \frac{d y}{d x}+\frac{\partial F_{2}}{\partial z} \frac{d z}{d x}=0\end{array}\right.\end{aligned}$
ie. $\quad\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}\end{array}\right]\left[\begin{array}{l}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]=-\left[\begin{array}{c}\frac{\partial F_{1}}{\partial x} \\ \frac{\partial F_{2}}{\partial x}\end{array}\right]$
\therefore If $\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}\end{array}\right]_{\text {at }(a, b, c)}$ is invectiable $(i . e . \operatorname{det}() \neq 0)$
then $\left[\begin{array}{l}\frac{d y}{d x} \\ \frac{d z}{d x}\end{array}\right]=-\left[\begin{array}{ll}\frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z}\end{array}\right]^{-1}\left[\begin{array}{l}\frac{\partial F_{1}}{\partial x} \\ \frac{\partial F_{2}}{\partial x}\end{array}\right] \quad(a t(a, b, c))$

General dimensions
Given $n+k$ variables, k equations

$$
\left\{\begin{array}{c}
\left(x_{1}, \cdots x_{n}, y_{1}, \cdots, y_{k}\right) \quad n+k \text { variables } \\
F_{1}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right)=c_{1} \\
\vdots \\
F_{k}\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{k}\right)=c_{k}
\end{array}\right.
$$

expect: y_{1}, \cdots, y_{k} can be solved aces functions of

$$
x_{1}, \cdots, x_{n} .
$$

(Ex: Try to write down the system from implicit differentiation)

