Quadratic Constraint for 3-vouiables

$$
\begin{aligned}
g(x, y, z)= & A x^{2}+B y^{2}+C^{2} z^{2}+2 P x y+2 Q y z+2 R z x \\
& +D x+E y+F z+G
\end{aligned}
$$

Same typical examples of $g=$ cost.
eg $1 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Ellipsoid

eg $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \quad$ Hyperbobid of 1 sheet
Up to scaling of each variables, graph looks like the graph of

$$
x^{2}+y^{2}-z^{2}=1
$$

Using polar condiuates on $x y$-plane,

$$
\Rightarrow x^{2}+y^{2}=r^{2}
$$

$\therefore$ the constraint can be written as

$$
r^{2}-z^{2}=1
$$



$\operatorname{leg} 3 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1$
same fa all directions of $\theta$


Hyperboloid of I sheet
scaling back to

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Hyperboloid of 2 sheets

Similarly, after scaling, looks like
$x^{2}+y^{2}-z^{2}=-1 \Leftrightarrow$ in polar $\quad r^{2}-z^{2}=-1$

$$
\Leftrightarrow \quad z^{2}-r^{2}=1
$$


same fa each directia of $\theta$


Hyperboloid of 2 sheets

In summary, we have

Graphs of Standard Quadratic Surfaces
Ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Hyperboloid of I sheet

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$




Hyperboloid of 2 sheets

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1
$$



Elliptic Cone

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0
$$



Elliptic Paraboloid

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$



Hyperbolic Paraboloid

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$



Degenerate to cylinders over conic sections
eg : Equation involve NO $z$ variables

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ cylinder of ellipse
other degenerate cases
eg $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0 \quad \in \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=-1$
Fact Any quadratic constraint $g(x, y, z)=c$ can be transformed to one of the standard forms by a change of coordinates.

Remark: As in 2-variables, only ellipsoid is closed and bounded

Further examples
egg Find the point on the ellipse

$$
x^{2}+x y+y^{2}=p \quad \text { (check: it is really a ellipse!) }
$$

with maximum $x$-coordinate.
Sol: Let $f(x, y)=x$ \& $g(x, y)=x^{2}+x y+y^{2}$
Maximize $f$ under the constraint $g=9$
Consider $F(x, y, \lambda)=x-\lambda\left(x^{2}+x y+y^{2}-9\right)$

$$
\left\{\begin{array} { l } 
{ 0 = \frac { \partial F } { \partial x } = 1 - \lambda ( 2 x + y ) } \\
{ 0 = \frac { \partial F } { \partial y } = - \lambda ( x + 2 y ) } \\
{ 0 = \frac { \partial F } { \partial \lambda } = - ( x ^ { 2 } + x y + y ^ { 2 } - 9 ) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\lambda(2 x+y)=1-11 \\
\lambda(x+2 y)=0-(2) \\
\left.x^{2}+x y+y^{2}=9-13\right)
\end{array}\right.\right.
$$

(To be contd)

