Review: Matrix Multiplication
Let $A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]$ be an $m \times n$-matric

$$
=\left[\begin{array}{c}
-\vec{a}_{1}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right] \quad \text { where } \quad \vec{a}_{i}=\left(a_{i,}, \cdots a_{i n}\right) \in \mathbb{R}^{n}
$$

If
$b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]=\left[\begin{array}{l}1 \\ \vec{b} \\ 1\end{array}\right] \quad \begin{gathered}\text { be a } n \times 1 \text {-matrix regarded } \\ \text { as a column vector in } \mathbb{R}^{n}\end{gathered}$ as a column vector in \mathbb{R}^{n},
then (matrix multiplication)

$$
\begin{aligned}
& A b=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
-\vec{a}_{1}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right]\left[\begin{array}{l}
1 \\
\vec{b} \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{11} b_{1}+\cdots+a_{1 n} b_{n} \\
\vdots \\
a_{m 1} b_{1}+\cdots+a_{m n} b_{n}
\end{array}\right]=\left[\begin{array}{c}
\vec{a}_{1} \cdot \vec{b} \\
\vdots \\
\vec{a}_{m} \cdot \vec{b}
\end{array}\right] \\
& \text { (result } \\
& =m \times 1-\text { motor } x \\
& \text { = column } m \text {-vector) }
\end{aligned}
$$

Similarly, for multiplication of $(1 \times n) \&(n \times k)$ matrices

$$
\begin{aligned}
& [-\vec{a}-]\left[\begin{array}{ccc}
\frac{1}{1} & \frac{1}{b_{1}} \cdots & \vec{b}_{k} \\
1 & 1
\end{array}\right] \quad \begin{array}{c}
\uparrow \\
\begin{array}{c}
\text { row } \\
\text { vector }
\end{array}
\end{array} \underbrace{\left(\vec{a}, \vec{b}_{1}, \cdots, \vec{b}_{k}\right.}_{\substack{\text { column } \\
\text { vectas }}} \in \mathbb{R}^{n}) \\
& =\left[\vec{a} \cdot \vec{b}_{1}, \cdots, \vec{a} \cdot \vec{b}_{k}\right] \quad \\
& \text { (result }=1 \times k \text {-matux }=\text { row } k \text {-vecta })
\end{aligned}
$$

In general: $(m \times n)$ times $(n \times k)$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
\vec{a}_{1} \cdot \vec{b}_{1} & \cdots & \vec{a}_{1} \cdot \vec{b}_{k} \\
\vdots & & \vdots \\
\vec{a}_{m} \cdot \vec{b}_{1} & \cdots & \vec{a}_{m} \cdot \vec{b}_{k}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & & 1 \\
A \vec{b}_{1} & \cdots & A \vec{b}_{k} \\
1 & & 1
\end{array}\right] \quad\left(=A\left[\begin{array}{ccc}
1 & & \mid \\
\vec{b}_{1} & \vec{b}_{k} \\
\mid & & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\stackrel{\rightharpoonup}{a}_{1} B- \\
\vdots \\
-\stackrel{\rightharpoonup}{a}_{m} B-
\end{array}\right] \quad\left(=\left[\begin{array}{c}
-\vec{a}_{1}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right] B\right)
\end{aligned}
$$

eg:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{lll}
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right]=\left[\begin{array}{ccc}
21 & 24 & 27 \\
47 & 54 & 61
\end{array}\right] \text { (check!) }} \\
& A \\
& A\left[\begin{array}{l}
5 \\
8
\end{array}\right]=\left[\begin{array}{l}
21 \\
47
\end{array}\right], A\left[\begin{array}{l}
6 \\
\rho
\end{array}\right]=\left[\begin{array}{l}
24 \\
54
\end{array}\right], A\left[\begin{array}{l}
7 \\
10
\end{array}\right]=\left[\begin{array}{l}
27 \\
61
\end{array}\right] \\
& {[1,2] B=[21,24,27]} \\
& {[3,4] B=[47,54,61]}
\end{aligned}
$$

Differentiability of Vector-Valued Functions

$$
\begin{aligned}
& \vec{f}: \Omega \rightarrow \mathbb{R}_{u}^{m},\left(\Omega \subset \mathbb{R}^{n} \text {, open }\right) \\
& \vec{f}(\vec{x})=\left[\begin{array}{c}
f_{1}(\vec{x}) \\
\vdots \\
f_{m}(\vec{x})
\end{array}\right]
\end{aligned}
$$

Supp re $\frac{\partial f_{i}}{\partial x_{j}}(\vec{a})$ exists for each $i=1, \cdots ; m$ \& $j=1, \cdots ; n$.

$$
\begin{align*}
& f_{i}(\vec{x})=f_{i}(\vec{a})+\vec{\nabla} f_{i}(\vec{a}) \cdot(\vec{x}-\vec{a})+\varepsilon_{i}(\vec{x}) \tag{*}
\end{align*}
$$

Put all $(*)_{i}$, we have

In the following definitions,

- $\vec{f}: \Omega \rightarrow \mathbb{R}^{m} \quad\left(\Omega \subset \mathbb{R}^{n}\right.$, орем $)$
- $\vec{f}(\vec{x})=\left[\begin{array}{c}f_{1}(\vec{x}) \\ \vdots \\ f_{m}(\vec{x})\end{array}\right]$ (ir component form)
- $\vec{a}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \in \Omega$
- $\vec{x}-\vec{a}=\left[\begin{array}{c}x_{1}-a_{1} \\ \vdots \\ x_{n}-a_{n}\end{array}\right]$

Def Jacobian Matrix of \vec{f} at \vec{a} is defined to be

$$
D \vec{f}(\vec{a})=\left[\begin{array}{c}
-\vec{\nabla} f_{1}(\vec{a})- \\
\vdots \\
-\vec{\nabla} f_{m}(\vec{a})-
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{a}) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{a})
\end{array}\right]
$$

(a man-matrix)

Def Linearization of \vec{f} at \vec{a} is defined to be

$$
\vec{L}(\vec{x})=\vec{f}(\vec{a})+D \vec{f}(\vec{a})(\vec{x}-\vec{a})
$$

$\tau_{\text {matrix }}$ multiplication

Def: \vec{f} is said to be differentiable at $\vec{a} \in \Omega$, if, $0 \frac{\partial f_{i}(\vec{a}) \text { exits } \forall i=1, \cdots m \& j=1, \cdots n}{\partial x_{j}}$

- Err term of the linear approximation

$$
\vec{\varepsilon}(\vec{x})=\vec{f}(\vec{x})-\vec{L}(\vec{x})
$$

satisfies

$$
\lim _{\vec{x} \rightarrow \vec{a}} \frac{\|\vec{\xi}(\vec{x})\|}{\|\vec{x}-\vec{a}\|}=0
$$

Remarks

$$
\text { (1) } \begin{aligned}
& {[D \vec{f}(\vec{a})]_{i j} } \\
& =\frac{\partial f_{i}}{\partial x_{j}}(\vec{a})
\end{aligned}
$$

$$
(i j \text {-entry of } D \vec{f}(\bar{a}))
$$

(2)
(3) if f is real-valued $(m=1)$, then

$$
D f(\vec{a})=\vec{\nabla} f(\vec{a}) \quad((1 \times n)-\text { matrix })
$$

(4) $\|\vec{\xi}(\vec{x})\|$ \& $\|\vec{x}-\vec{a}\|$ are length in $\mathbb{R}^{m} \& \mathbb{R}^{n}$ respectively.

$$
\begin{aligned}
& \vec{f}(\vec{x})=\vec{f}(\vec{a})+D \vec{f}(\vec{a})(\vec{x}-\vec{a})+\vec{\varepsilon}(\vec{x})
\end{aligned}
$$

(5) $\lim _{\vec{x} \rightarrow \vec{a}} \frac{\|\vec{\varepsilon}(\vec{x})\|}{\|\vec{x}-\vec{a}\|}=0 \Leftrightarrow \lim _{\vec{x} \rightarrow \vec{a}} \frac{\left|\varepsilon_{i}(\vec{x})\right|}{\|\vec{x}-\vec{a}\|}=0 \quad \forall i$

Hence
\vec{f} is differentiable at $\vec{a} \Leftrightarrow f_{i}$ is differentiable at $\vec{a}, \forall i=1 ; ; m$

Approximation:

$$
\begin{aligned}
& \vec{f}(\vec{x}) \approx \vec{L}(\vec{x})=\vec{f}(\vec{a})+D \vec{f}(\vec{a})(\vec{x}-\vec{a}) \\
& \Rightarrow \underbrace{\vec{f}(\vec{x})-\vec{f}(\vec{a})}_{\overrightarrow{\vec{x}}} \approx \underbrace{D \vec{f}(\vec{a})}_{\uparrow}(\underbrace{(\vec{a})}_{\Delta \vec{x}=\vec{a})}
\end{aligned}
$$

Notation: $\quad d \vec{f}=D \vec{f}(\vec{a})(\vec{x}-\vec{a})$ approximated change of f
ie. $\Delta \vec{f} \simeq d \vec{f}$ (total differential)

$$
(a d \vec{f}=D \vec{f}(\vec{a}) d \vec{x})
$$

eg:

$$
\begin{aligned}
\vec{f}(x, y) & =\left((y+1) \ln x, x^{2}-\sin y+1\right) \\
& =\binom{(y+1) \ln x}{x^{2}-\sin y+1}=\binom{f_{1}(x, y)}{f_{2}(x, y)}\binom{\text { Rewrite as }}{\text { colleen vecta }}
\end{aligned}
$$

(1) Find $D \vec{f}(1,0)$
(2) Approximate $\vec{f}(0.9,0.1)$

Soln: (1) $\vec{D} \vec{f}(x, y)=\left[\begin{array}{ll}\frac{\partial}{\partial x}(y+1) \ln x & \frac{\partial}{\partial y}(y+1) \ln x \\ \frac{\partial}{\partial x}\left(x^{2}-\sin y+1\right) & \frac{\partial}{\partial y}\left(x^{2}-\sin y+1\right)\end{array}\right]\left(=\left[\begin{array}{c}-\vec{\nabla} f_{1}- \\ -\vec{\nabla} f_{2}-\end{array}\right]\right)$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\frac{y+1}{x} & \ln x \\
2 x & -\cos y
\end{array}\right] \\
\Rightarrow \quad D \vec{f}(1,0) & =\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

(2)

$$
\begin{aligned}
\vec{L}(x, y) & =\vec{f}(1,0)+D \vec{f}(1,0)\left[\begin{array}{l}
x-1 \\
y-0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
z
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
x-1 \\
y
\end{array}\right] \\
\vec{f}(0.9,0.1) & \simeq \vec{L}(0.9,0.1) \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right] \underbrace{0.1}_{\underbrace{[0.9-1}_{4}}] \\
& =\left[\begin{array}{c}
-0.1 \\
1.7
\end{array}\right] \quad(\text { check! })
\end{aligned}
$$

