Thue Suppose f is differentiable at
$$\vec{a}$$
.
Let \vec{u} be a unit vector in \mathbb{R}^n , then
 $D_{\vec{u}}f(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot \vec{u}$

eg: let
$$f(x,y) = \Delta \overline{u}(\frac{x}{y})$$
.
Find the rate of change of f at $(1, \overline{z})$ in the direction of $\overline{V} = (1, -1)$ (not necessary unit).

Remark:
$$\vec{v} \neq \vec{o} \in \mathbb{R}^{h}$$
, not necessary mult, then
the direction of \vec{V} is $\frac{\vec{v}}{\|\vec{v}\|}$ (a minimized a).

 $\underbrace{\operatorname{Solu}}_{1}: \quad \operatorname{Let} \quad \widetilde{\mathfrak{U}} = \frac{\widetilde{\mathfrak{U}}}{||\widetilde{\mathfrak{U}}||} = \frac{1}{\sqrt{1^{2}+(1)^{2}}} (1,-1) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ $\frac{\partial f}{\partial X} = \frac{\partial}{\partial \chi} \operatorname{and}^{-1}(\frac{X}{y}) = \frac{1}{\sqrt{1-(\frac{X}{5})^{2}}} \frac{\partial}{\partial \chi}(\frac{X}{y}) = \frac{1}{\sqrt{1-(\frac{X}{5})^{2}}} \cdot \frac{f}{y}$ $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \operatorname{and}^{-1}(\frac{X}{y}) = \frac{1}{\sqrt{1-(\frac{X}{5})^{2}}} \frac{\partial}{\partial y}(\frac{X}{y}) = \frac{1}{\sqrt{1-(\frac{X}{5})^{2}}} \cdot \frac{-X}{y^{2}}$ $[\operatorname{Note}, f, \frac{\partial f}{\partial X}, \frac{\partial f}{\partial y} \text{ are influences "near"}(1, \sqrt{2}) \Rightarrow f \tilde{\omega} C' \operatorname{near}(1, \sqrt{2})]$ $f \tilde{\omega} differentiable at (1, \sqrt{2})$ $\underbrace{\operatorname{Thm}}_{1} = \int_{1}^{1} \frac{f}{\sqrt{1-1}} (1, \sqrt{2}) = \sqrt{1-1} f(1, \sqrt{2}) \cdot \widetilde{\chi}$

$$= \left(\frac{\partial f}{\partial X}(1, \sqrt{2}), \frac{\partial f}{\partial y}(1, \sqrt{2})\right) \cdot \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$$
$$= \cdots = \frac{1}{\sqrt{2}} + \frac{1}{2} \quad (\text{Check!})$$

Pf: (Differentiable ⇒ Diff
$$(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot \vec{u}$$
)
Let L(\vec{x}) be the linearization of $f(\vec{x})$ at \vec{a}

$$\begin{split} & f(\vec{x}) = L(\vec{x}) + \hat{\varepsilon}(\vec{x}) \\ &= f(\vec{a}) + \vec{\nabla}f(\vec{a}) \cdot (\vec{x} - \vec{a}) + \hat{\varepsilon}(\vec{x}) \end{split}$$

with
$$\frac{|\dot{\epsilon}(\dot{x})|}{\|\dot{x}-\dot{\alpha}\|} \rightarrow 0$$
 as $\dot{x} \rightarrow \dot{a}$.

Putting $\vec{\chi} = \vec{a} + t\vec{u}$, we have $f(\vec{a} + t\vec{u}) - f(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot t\vec{u} + \mathcal{E}(\vec{a} + t\vec{u})$

$$\Rightarrow \frac{f(\vec{a}+t\vec{u})-f(\vec{a})}{t} = \vec{\nabla}f(\vec{a})\cdot\vec{u} + \frac{\xi(\vec{a}+t\vec{u})}{t}$$

Note that
$$|\mathfrak{X}| = \|\widehat{\mathfrak{X}} - \widehat{\mathfrak{a}}\|_{\mathcal{I}}$$

$$\left|\frac{\varepsilon(\widehat{\mathfrak{a}} + t\widehat{\mathfrak{u}})}{t}\right| = \frac{|\varepsilon(\widehat{\mathfrak{a}} + t\widehat{\mathfrak{u}})|}{\|\widehat{\mathfrak{X}} - \widehat{\mathfrak{a}}\|} \longrightarrow 0 \quad as \quad (\widehat{\mathfrak{X}} = \widehat{\mathfrak{a}} + t\widehat{\mathfrak{u}}) \\ \mathfrak{X} = \widehat{\mathfrak{a}} + t\widehat{\mathfrak{u}} \\ \mathfrak{X} = \widehat{\mathfrak{u}} \\ \mathfrak{X} = \widehat{\mathfrak{u}} \\ \mathfrak{X} = \widehat{\mathfrak{u}} \\ \mathfrak{X} = \widehat{\mathfrak{u}} + t\widehat{\mathfrak{u}} \\ \mathfrak{X} = \widehat{\mathfrak{u}} + t\widehat{\mathfrak{u}} \\ \mathfrak{X} = \widehat{\mathfrak{u}} \\ \mathfrak{U} = \widehat{\mathfrak{U} = \widehat{\mathfrak{u}} \\ \mathfrak{U} = \widehat{\mathfrak{U} = \widehat{\mathfrak{u}} \\ \mathfrak{U} = \widehat{\mathfrak{U} = \widehat{\mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} = \widehat{\mathfrak{U} = \widehat{\mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} = \widehat{\mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} = \mathfrak{U} = \widehat{\mathfrak{U} = \mathfrak{U} \\ \mathfrak{U} =$$

Geometric Meanings of Gradient $\overline{\nabla}f$

At a point
$$\vec{a}$$
, f increases (decreases) most rapidly
in the direction of $\nabla f(\vec{a})$ ($-\nabla f(\vec{a})$) at a rate
of $\|\nabla f(\vec{a})\|$

Idea: If f is differentiable at
$$\vec{a}$$
, then
 $D_{\vec{u}}f(\vec{a}) = \vec{\nabla}f(\vec{a})\cdot\vec{u}$ (for $\|\vec{u}\|=1$)
Cauchy-Schwarg \Rightarrow
 $|D_{\vec{u}}f(\vec{a})| \le \|\vec{\nabla}f(\vec{a})\| \|\vec{u}\|$
 $= ||\vec{\nabla}f(\vec{a})||$

$$\begin{aligned} \begin{array}{ll} & - \| \widehat{\nabla} f(\widehat{\alpha}) \| \leq \| D_{\widehat{u}} f(\widehat{\alpha}) \| \leq \| \widehat{\nabla} f(\widehat{\alpha}) \| \\ & \uparrow & \uparrow \\ & & \uparrow & \uparrow \\ & & \downarrow = " \text{ holds} \\ & \Leftrightarrow & \widehat{u} = - \frac{\widehat{\nabla} f(\widehat{\alpha})}{\| \widehat{\nabla} f(\widehat{\alpha}) \|} \\ & \Leftrightarrow & \widehat{u} = \frac{\widehat{\nabla} f(\widehat{\alpha})}{\| \widehat{\nabla} f(\widehat{\alpha}) \|} \\ & \swarrow \end{aligned}$$

Remark : $D_{\vec{v}}f(\vec{a})$ can be defined for any vector \vec{v} , not necessary $||\vec{v}||=1$ and could be \vec{o} , by the same definition

$$D_{\vec{v}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a}+t\vec{v}) - f(\vec{a})}{t}$$

One can show that

$$D_{U}^{+}f(\bar{a}) = \begin{cases} \|\vec{v}\| D_{U}^{+}f(\bar{a}), \vec{v} \neq \vec{v} \neq \vec{o} \\ 0, \vec{v} \neq \vec{v} \neq \vec{o} \end{cases}$$
and that

$$D_{U}^{+}f(\bar{a}) = \nabla f(\bar{a}) \cdot \vec{v} \qquad \text{if } f \vec{v} \text{ differentiable at } \vec{a} \end{cases}$$
(not true in general, if f is not differentiable)
eq. $f(x,y) = J(xy) \quad \text{at } (0,0)$

Properties of Gradient
If
$$j \cdot f, g: \mathcal{D} \Rightarrow \mathbb{R}$$
 ($\mathcal{D} \in \mathbb{R}^{n}$, open) are differentiable,
 $i \cdot C$ is a constant,
Hen
(1) $\vec{\nabla}(f \pm g) = \vec{\nabla}f \pm \vec{\nabla}g$,
(2) $\vec{\nabla}(cf) = c\vec{\nabla}f$
(3) $\vec{\nabla}(fg) = g\vec{\nabla}f + f\vec{\nabla}g$
(4) $\vec{\nabla}(\frac{f}{g}) = \frac{g\vec{\nabla}f - f\vec{\nabla}g}{g^{2}}$ provided $g \pm 0$
(Pf = Easily from properties of partial derivatives)

Remark: In the future, df and dx; can be interpreted as a linear maps from IR" to IR.

eg: Let
$$V(r, t_{i}) = \pi r^{2} h$$

(Volume of the Cylinder)
 V is differentiable (because V is C')
 $dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial h} dh$
 $= 2\pi r h dr + \pi r^{2} dh$
For application:
Suppose we want to approximate the change of V
when (r, t_{i}) changes $(r, t_{i}) = (3, 12)$ to $(3+0.08, 12-0.3)$
Then let $dr = \Delta t = 0.08$
 $dh = \Delta t = -0.3$,
we have

$$\Delta V \simeq dV = 2\pi r A dr + \pi r^{2} d A$$

= $2\pi \cdot 3 \cdot (2 \cdot 0.08 + \pi 3^{2} \cdot (-0.3))$
= $3.06\pi \simeq 9.61$ ×

Properties of Total Differential
If
$$f \cdot f \cdot g : \Omega \rightarrow IR$$
 ($\Omega \subseteq IR$), open) are differentiable, and
 $I \cdot C \in IR$ is a constant.
Then
(I) $d(f \pm g) = df \pm dg$,
(I) $d(f \pm g) = df \pm dg$,
(I) $d(cf) = c df$
(I) $d(cf) = g df + f dg$
(I) $d(fg) = g df + f dg$
(I) $d(fg) = \frac{g df - f dg}{g^2}$ provided $g \neq 0$

(Pf = Easily from properties of pontial derivatives)

Summary (on differentiation of a real-valued function on
$$\mathbb{R}^n$$
)
 $f: \mathbb{R}^n \rightarrow \mathbb{R}$

A. Types of differentiations (derivatives)

• <u>Directimal Derivative</u> :

$$\mathcal{D}_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t} \quad (\|\vec{u}\| = 1)$$

• Partial derivatives:

$$\frac{\partial f}{\partial x_{i}}(\vec{a}) = D_{\vec{e}_{i}}f(\vec{a}), \quad \vec{e}_{i} = (0, \dots, 1, \dots, 0)$$

$$\sum_{i \neq i} f(i) = D_{\vec{e}_{i}}f(i), \quad \vec{e}_{i} = (0, \dots, 1, \dots, 0)$$

• Gradient
$$\overline{\nabla}f(\overline{a}) = \left(\frac{\partial f}{\partial X_{1}}(\overline{a}), \cdots, \frac{\partial f}{\partial X_{n}}(\overline{a})\right)$$

• Total Differential

$$df(\vec{a}) = \sum_{\bar{x}=1}^{n} \frac{\partial f}{\partial x_{\bar{x}}}(\vec{a}) dx_{\bar{x}}$$

• Higher Derivatives

$$\frac{\partial^{k_1 + \dots + k_n} f}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} (\vec{a})$$
(provided f is C^k , $k = k_1 + \dots + k_n$)
 \uparrow all partial derivatives up to ador k exist $k \in k$.

B. Linear approximation

- $L(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} \vec{a})$
- $f(\vec{x}) = L(\vec{x}) + E(\vec{x})$ remerranterm

• f is differentiable at \bar{a} $\iff \lim_{\substack{x > \bar{a} \\ x > \bar{a}}} \frac{|\mathcal{E}(\bar{x})|}{||\bar{x} - \bar{a}||} = 0$ In this case, $df \simeq \Delta f$ (by identifying $dx_i = \Delta x_i$)

C. Relations among various concepts
•
$$C^{\infty} \Rightarrow \cdots \Rightarrow C^{k+1} \Rightarrow C^{k} \Rightarrow \cdots \Rightarrow C' \Rightarrow C^{\circ}$$
 (No reverse implication)

Condex examples:
eg1:
$$f = \mathbb{R} \Rightarrow \mathbb{R}$$
 (\tilde{u} MATH2050)
 $f(x) = \int x^{2}a\tilde{u}_{x}^{+}$ if $x \neq 0$
 f is differentiable on \mathbb{R} but (cluck!)
 $f(x)$ is not continuous at $x=0$
(For $x \neq 0$, $f(x) = zxa\tilde{u}_{x}^{+} - \cos \frac{1}{x}$ limit DNE as $x \Rightarrow 0$)
Similarly $g(x) = x^{2k-2} f(x)$ is k -time differentiable but
 $g^{(k)}(x)$ is not catinuous at $x=0$ (Pf: Omitted)
Hance k -time differentiable $\neq C^{k}$.
(For multi-variable : $\Re(\tilde{x}) = \Re(x_{1}, \dots, x_{n}) = g(x_{1})$)
 $\frac{cg2}{2} = f(x,y) = \begin{cases} \frac{xy^{2}}{x^{2}+y^{4}} & \text{if } x^{2}+y^{2} \neq 0\\ 0 & \text{if } x^{2}+y^{2} = 0 \end{cases}$
 $D_{u}f(0,0)$ exists, \forall unit vector $\tilde{u} = (ao, a\tilde{u}, o) \in \mathbb{R}^{2}$
but f is not catinuous at $(0,0)$ (cluck!)

$$\underbrace{g_{2}}{f(x,y)} = \begin{cases} \frac{xy^{2}}{x^{2}+y^{4}} & if \quad x^{2}+y^{2}=0 \\ 0 & if \quad x^{2}+y^{2}=0 \end{cases}$$

$$\underbrace{D_{\vec{u}}f(0,0) \text{ exists, } \forall \text{ unit vecta, } \vec{u} = ((a00, ain0) \in \mathbb{R}^{2} \\ but \quad f \quad is \quad not \quad cantainons \quad at \quad (0,0) \quad (check!) \end{cases}$$

y = f(x, y) = |x+y|is continuous on IR², but fx(0,0), fy(0,0) DNE (check!)

$$\frac{eq4}{f_x(0,0)} = \int |Xy|$$

$$f_x(0,0) = \int |Xy|$$

$$f_x(0,0) = f_y(0,0) = xint \quad (in fact = 0)$$

$$hut \quad D_{in} f(0,0) = DNE \quad fa \quad in \neq \pm \overline{e_1}, \pm \overline{e_2}$$