A sufficient condition for differentiability:
The Let $\Omega \subseteq \mathbb{R}^{n}$ be open, f be C^{\prime} on Ω, then f is differentiable on Ω
(The assumption requires all $\frac{\partial f}{\partial x_{i}}$ exist on Ω, not just at a sügle pt. \vec{a})
Pf: (We prove it for 2 -voniables, suñilar proof fo general case)
Suppose $(a, b) \in \Omega$

$$
\& \quad B_{\delta}(a, b) \subset \Omega(\delta>0, \text { small })
$$

For any $(x, y) \in B_{\delta}(a, b)$

$$
\begin{aligned}
f(x, y)-f(a, b) & =\underbrace{f(x, y)-f(x, b)}+f(\underbrace{f(x, b)-f(a, b)} \\
& =f_{y}(x, k)(y-b)+f_{x}(h, b)(x-a) \quad \begin{array}{l}
\text { (by Mean Value) } \\
\text { Thenems }
\end{array}
\end{aligned}
$$

where k between $y \& b ; h$ between $x \& a$.

$$
\begin{aligned}
& \frac{|\varepsilon(x, y)|}{\|(x, y)-(a, b)\|}=\frac{\left|f(x, y)-f(a, b)-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)\right|}{\|(x, y)-(a, b)\|} \\
& =\frac{\left|f_{y}(x, k)(y-b)+f_{x}(h, b)(x-a)-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)\right|}{\|(x, y)-(a, b)\|}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left|\left(f_{x}(h, b)-f_{x}(a, b)\right)(x-a)+\left(f_{y}(x, k)-f_{y}(a, b)\right)(y-b)\right|}{\|(x, y)-(a, b)\|} \\
\binom{\text { Caudle- }}{\text { Schwas }} & \leqslant \frac{\sqrt{\left(f_{x}(t, b)-f_{x}(a, b)\right)^{2}+\left(f_{y}(x, b)-f_{y}(a, b)\right)^{2}} \sqrt{(x-a)^{2}+(y-b)^{2}}}{\|(x, y)-(a, b)\|} \\
& =\sqrt{\left(f_{x}(t, b)-f_{x}(a, b)\right)^{2}+\left(f_{y}(x, b)-f_{y}(a, b)\right)^{2}}
\end{aligned}
$$

Note that if $(x, y) \rightarrow(a, b)$, then $(k, k) \rightarrow(a, b)$.
Hence

$$
\begin{aligned}
\frac{|\varepsilon(x, y)|}{\|(x, y)-(a, b)\|} \leqslant \sqrt{\left(f_{x}(t, b)-f_{x}(a, b)\right)^{2}+\left(f_{y}(x, b)-f_{y}(a, b)\right)^{2}} & \rightarrow 0 \\
& \text { as }(x, y) \rightarrow(a, b)
\end{aligned}
$$

because $f_{x} \& f_{y}$ are continues.
$\therefore f$ is differentiable at (a, b).
Since $(a, b) \in \Omega$ is arbitrary, f is differentiable on Ω_{*}

US: (1) constant functions $f(\vec{x})=C$ is differentiable
(2) coordinate functions $f(\vec{x})=x_{i}$ are differentiable
(3) (1)\&(2) $\Rightarrow f(\vec{x})=a+b_{1} x_{1}+\cdots+b_{n} x_{n}$ is differentiable
(Linear function. Far this f, what is the limearization (\vec{x}) at $\vec{x}=\overrightarrow{0}$)
(4) Polynomials \& rational functions are differentiable (in their domain of definition).
(5) If $f(\vec{x})$ is differentiable, then $e^{f(\vec{x})}, \sin (f(\vec{x})), \cos (\vec{f}(\vec{x}))$ are differentiable.
$\begin{array}{rcc}\text { And } & \ln (f(\vec{x})) & \text { when } \\ & \sqrt{f(\vec{x}})>0 \\ & \left.\begin{array}{ccc}f(\vec{x}) & \text { when } & f(\vec{x})>0 \\ & |f(\vec{x})| & \text { when } \\ f(\vec{x}) \neq 0 \\ & \ln |f(\vec{x})| & \text { when } \\ f(\vec{x}) \neq 0\end{array}\right\} \text { are diffecentiontle. }\end{array}$
In particular, fa example $\frac{e^{\sqrt{4+\sin \left(x^{2}+x y\right)}}}{\ln \left(1+\cos \left(x^{2} y\right)\right)}$ is differentiable in the domain of defäition
eq: $f(x, y, z)=x e^{x+y}-\ln (x+z) \quad\left(=x e^{x+y}-\log (x+z)\right)$
Domain of $f=\left\{(x, y, z) \in \mathbb{R}^{3}: x+z>0\right\}$ (is open)

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=e^{x+y}+x e^{x+y}-\frac{1}{x+z} \\
& \frac{\partial f}{\partial y}=x e^{x+y} \\
& \frac{\partial f}{\partial z}=-\frac{1}{x+z}
\end{aligned}
$$

$x+z>0$ all terns are catcinnows in the domain of f.
$\Rightarrow f$ is C^{\prime} (onsite domain) $\Rightarrow f$ is differentiable (on its domain).

Gradient and Directional Derivative

Ref: Let, $\left\{\begin{array}{l}f: \Omega \rightarrow \mathbb{R},\left(\Omega \leqslant \mathbb{R}^{n}, \text { open }\right) \\ \cdot \vec{a} \in \Omega\end{array}\right.$
Then the gradient vector of f at \vec{a} is defied to be

$$
\vec{\nabla} f(\vec{a})=\left(\frac{\partial f}{\partial x_{1}}(\vec{a}), \cdots, \frac{\partial f}{\partial x_{n}}(\vec{a})\right)
$$

Remark: Using $\vec{\nabla} f$, limearigation of f at \vec{a} can be written as

$$
\begin{aligned}
L(\vec{x}) & =f(\vec{a})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{a})\left(x_{i}-a_{i}\right) \\
& =f(\vec{a})+\vec{\nabla} f(\vec{a}) \cdot(\vec{x}-\vec{a})
\end{aligned}
$$

eg: $f(x, y)=x^{2}+2 x y$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x+2 y, \quad \frac{\partial f}{\partial y}=2 x \\
& \therefore \quad \vec{\nabla} f(x, y)=(2 x+2 y, 2 x) \\
& (\text { eg. } \vec{\nabla} f(1,2)=(6,2))
\end{aligned}
$$

Def: Let, $f: \Omega \rightarrow \mathbb{R},\left(\Omega \leqslant \mathbb{R}^{n}\right.$, open $)$

- $\vec{a} \in \Omega$
- $\vec{u} \in \mathbb{R}^{n}$ be a unit vector, ie. $\|\vec{u}\|=1$.

Then the directional derivative of f in the direction of \vec{u} at \vec{a} is defined to be

$$
D_{\vec{u}} f(\vec{a})=\lim _{t \rightarrow 0} \frac{f(\vec{a}+t \vec{u})-f(\vec{a})}{t}
$$

(= rate of change of f in the direction of \vec{u} at the point \vec{a})
Remark: If $\vec{u}=(0, \cdots, 1, \cdots, 0)=\vec{e}_{j}$,
$*_{j \text { th component }}$

$$
j=1, \because, n
$$

$$
D_{\vec{e}_{j}} f(\vec{a})=\frac{\partial f}{\partial x_{j}}(\vec{a})
$$

