Pf of Clairauts Thm
We may assume
$$\tilde{a} = (0,0) \in \Omega$$
,
and we need to shard
 $f_{xy}(0,0) = f_{yx}(0,0)$
 $f_{yy}(0,0) = f_{yx}(0,0)$
 $f_{yy}(0,0) = f_{yx}(0,0)$
 $f_{yy}(0,0) = f_{yx}(0,0)$
 $f_{yy}(0,0) = f_{yx}(0,0)$
 $f_{xy}(0,0) = f_{yx}(0,0)$
 $f_{xy}(0,0) = f_{yx}(0,0)$
 $f_{xy}(0,0) = f_{yy}(0,0)$
 $f_{xy}(0,0) = f_{yy}(0,0)$
 $f_{xy}(0,0) = f_{xy}(0,0)$
 $f_{xy}(0,0) = f_{xy}(0,$

$$\Rightarrow \quad d = f_k f_{xy}(R_l, k_l)$$

Similarly,
$$\exists (f_{12}, f_{2}) \in (0, h) \times (0, k)$$
 s.t.
 $\chi = f_{1}f_{1}f_{2}f_{2}f_{2}$, (f_{2}, f_{2}) (Ex!)

$$\Rightarrow f_{xy}(h_1, k_1) = f_{yx}(h_2, k_2)$$

$$Jetting h_k \to 0^{\dagger} \Rightarrow h_1, k_1 \to 0^{\dagger}, k_2 \to 0^{\dagger}$$

By containing of fxy
$$x$$
 fyx at \tilde{a} =(0,0), we have
 $5_{xy}(0,0) = f_{yx}(0,0)$

Def let
$$f: \Omega \rightarrow IR$$
 ($\Omega \leq IR^n$, open)
Then • f is called a C^k function if
all pontial derivatives of f up to
order k exist and are continuous on Ω
• f is called a C^{0} function if
 f is C^k for all $k \neq 0$.

Generalization of Clairaut's Thm

If f is
$$C^k$$
 on on open set $\Im \subseteq \mathbb{R}^n$, then the order
of (taking) differentiation does not matter for all
pontial derivatives up to order k.

Differentiability

<u>Recall</u>: I-variable : f is differentiable at a if $f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists which is equivalent to <u>Linear Approximation</u> of f at the point a : $f(x) \approx f(a) + f(a)(x - a)$ L(x) is the "best" linear function (deg ≤ 1, poly) to approximate f(x) hear a

What does it moan by the "best"?
Answer:
$$\lim_{X \to a} \frac{|f(x) - L(x)|}{|x - a|} = 0$$

Where $f(x) - L(x)$ is usually referred on the $\int \lim_{X \to a} |\frac{f(x) - f(a)}{x - a} - f(a)|$

 $\lim_{X \to 0} \frac{|\xi(X)|}{|\xi(X)|} = 0$

"error" term
$$\xi(x) = f(x) - L(x)$$
.

Higher dimensions analog:
linear function (deg <1, poly)

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
and want

$$f(x,y) \sim L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

$$E_{\text{trol}} = \left| f(\vec{x}) - L(\vec{x}) \right|$$

$$E_{\text{trol}} = \left| f(\vec{x}) - L(\vec{x}) \right|$$

$$E_{\text{trol}} = f(a_{1}b) + f_{x}(a_{1}b)(x-a) + f_{y}(a_{2}b)(y-b)$$

$$= f(a_{1}b) + f_{x}(a_{1}b)(x-a) + f_{y}(a_{2}b)(y-b)$$

Def: Let,
$$f: \mathcal{D} \to \mathbb{R}$$
, $\mathcal{D} \subseteq \mathbb{R}^{n}$, open
1. $\vec{a} = (a_{1}, ..., a_{n}) \in \mathcal{D}$
Then f is said to be differentiable at \vec{a}
if (1) $\frac{2f}{2x_{i}}(\vec{a})$ exists fa all $\vec{a}=1,...,n$
(2) In the linear approximation fa $f(\vec{x})$ at \vec{a}
 $f(\vec{x}) = f(\vec{a}) + \sum_{\vec{x}=1}^{n} \frac{2f}{2x_{i}}(\vec{a})(x_{i}-a_{i}) + \mathcal{E}(\vec{x})$,
 $L(\vec{x})$ linear approx.
He error term $\mathcal{E}(\vec{x})$ satisfies
 $\lim_{\vec{x} \neq \vec{a}} \frac{|\mathcal{E}(\vec{x})|}{||\vec{x}-\vec{a}||} = 0$.

(A differentiable function is one which can be well approximated) by a linear function locally.

$$\frac{\text{Remark}}{\text{Remark}}: \quad \lfloor (\vec{x}) = f(\vec{a}) + \sum_{x=1}^{n} \frac{\partial f}{\partial x_{i}} (\vec{a}) (x_{i} - a_{i}) \\ \xrightarrow{\uparrow} \qquad \Delta x_{i}} \\ \text{slope of fin} \\ x_{i} - \text{direction at } \vec{a}$$

eg 1:
$$f(x,y) = x^2 y$$

(1) Show that f is differentiable at (1,2)
(2) Approximate $f(1,1,1.9)$ using linearization, $f(1,2)$
(3) Find tangent plane of $z = f(x,y)$ at $(1,2,2)$.

$$\frac{Solm:}{\frac{\partial f}{\partial x}} = 2Xy, \quad \frac{\partial f}{\partial y} = x^{2}$$

$$\frac{\partial f}{\partial x}(1,2) = 4, \quad \frac{\partial f}{\partial y}(1,2) = 1$$

(c) The equation of the tangent plane of
$$Z = f(x,y)$$

at the point $(x,y) = (1,2)$ is
 $Z = L(x,y) = 2 + 4(x-1) + (y-2)$
(i.e. $Z = 4x+y-4$)
(or $4x+y-z=4$)

$$\frac{\partial g_{2}}{\partial x} \quad \text{Is} \quad \int [x,y] = J[xy] \quad differentiable \quad dt \quad (0,0)^{2}.$$
Solu:
$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial u}{\partial x \partial y} \quad \frac{f(\eta,0) - f(0,0)}{\partial x} = \frac{\partial u}{\partial x} \quad \frac{\partial - 0}{\partial x} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \cdots = 0 \quad (\text{Sanilarly}, \quad \text{Ex!})$$

$$\text{Linearization} \quad L(X,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0) \times + \frac{\partial f}{\partial y}(0,0) \text{ y}$$

$$= 0 + 0 \cdot x + 0 \cdot y$$

$$= 0$$

$$\text{Error term} \quad \mathcal{E}(x,y) = f(x,y) - L(x,y) = f(x,y)$$

$$= \int [xy]$$

$$\text{Line} \quad \frac{|\mathcal{E}(x,y)|}{||(x,y) - (0,0)||} = \lim_{x \to 0} \frac{\int [xy]}{\sqrt{x^{2} + y^{2}}}$$

$$= \lim_{x \to 0} \frac{r \int [w \partial w \partial v]}{r} = \lim_{x \to 0} \int \frac{|w \partial w}{r} \partial v$$

$$\text{Different directions (in different θ) give different limits
$$\lim_{x \to 0} \frac{|\mathcal{E}(x,y)|}{||(x,y) - (0,0)||} = DNE$$$$

 \therefore f=JIXyI is not differentiable at (0,0).

 $\left(\frac{\text{Note}}{\text{Differentiability}}^{"} \Rightarrow \underset{\text{in formation along X & y direction}}{\text{Note}} \right)$

The If
$$f(\vec{x})$$
 is differentiable at \vec{a} , then $f(\vec{x})$ is continuous at \vec{a} .

$$\begin{split} \underline{Pf} : f(\vec{x}) &= L(\vec{x}) + \mathcal{E}(\vec{x}) \quad \forall \quad differentiable \iff \lim_{\vec{x} \to \vec{a}} \frac{|\mathcal{E}(\vec{x})|}{||\vec{x} - \vec{a}||} = 0 \\ &= f(\vec{a}) + \sum_{\vec{x}=1}^{n} \frac{\partial f}{\partial \vec{x}_{i}}(\vec{a}) (x_{i} - u_{i}) + \mathcal{E}(\vec{x}) \\ \Rightarrow \quad |f(\vec{x}) - f(\vec{a})| &\leq \left| \sum_{\vec{x}=1}^{n} \frac{\partial f}{\partial \vec{x}_{i}}(\vec{a}) (x_{i} - u_{i}) \right| + \left| \mathcal{E}(\vec{x}) \right| \quad (\text{Triangle ineg.}) \\ ((\text{annly-schwarg.}) &\leq \left(\int (\frac{\partial f}{|\partial \vec{x}_{i}|}(\vec{a}))^{2} + \frac{|\mathcal{E}(\vec{x})|}{||\vec{x} - \vec{a}||} \right) \cdot (||\vec{x} - \vec{a}||) \\ &\to 0 \quad ab \quad \vec{x} \to \vec{a} \\ & \text{by Squeeze Thm & Differentiability } \\ \end{split}$$

