<u>Eg</u> :					
Subset	B,(0,0)	$\overline{B_{(0,0)}}$	SI	\mathbb{R}^2	ϕ
SCR ^z	$= \{(X,Y) \in \mathbb{R}^2 : X^2 + Y^2 < 1\}$	$= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1 \leq 1$	$= \{(X,Y) \in \mathbb{R}^2 : X^2 + y^2 = 1 \}$		(empty set)
Int(s)	B ₁ (0,0)	B1(0, 0)	ϕ	\mathbb{R}^{2}	Ø
Ext(S)	$\mathbb{R}^{2} \setminus \overline{B_{1}(0,0)}$ $= \{(x,y) \in \mathbb{R}^{2} \colon \chi^{2} + y^{2} > 1\}$	$\mathbb{R}^2 \setminus \overline{B_1(0,0)}$	$\mathbb{R}^2 \setminus \mathbb{S}^1$	φ	\mathbb{R}^2
92	\mathbb{S}^{1}	\mathbb{S}^{I}	S	φ	ϕ
Open?	Yes	No	No	Yes.	Tes
Closed?	No	Yes	Yes	Yes	Yes
Picture					

<u>Remarks</u>: (1) There are exactly two subjects of Rⁿ which are <u>both</u> open and closed = Rⁿ and Ø.
(2) Some subjects of Rⁿ are <u>neither</u> open <u>ner</u> closed.
(eg: above)
(3) For any SSRⁿ, Int(S) = Ext(S) are <u>open</u> in IRⁿ;
DS is <u>closed</u> in Rⁿ
(Ex: What about Int(S) = ?)

connected inside S.

<u>Remark</u>: In topology, there is a different notion called "connected". We'll not discuss it.

The (Jordan Curve Theorem)
A simple closed curve in
$$\mathbb{R}^2$$
 divides \mathbb{R}^2 into 2 path-connected
components, with one bounded and one unbounded

Remark: "closed anne" means contributes curve
$$\vec{X}(t)$$
, $a \leq t \leq b$
with $\vec{X}(a) = \vec{X}(b)$. And one can show that it is a
"closed subset" in \mathbb{R}^2 .

