Eg:

Remarks: (1) There are exactly two subsets of \mathbb{R}^{n} which are both open and closed: \mathbb{R}^{n} and ϕ.
(2) Some subsets of \mathbb{R}^{n} are neither open na closed. (eg: above)
(3) Fa any $S \subseteq \mathbb{R}^{n}$, $\operatorname{Int}(S) \& \operatorname{Ext}(S)$ are open in \mathbb{R}^{n}; ∂S is closed in \mathbb{R}^{n}
(Ex: What about Int (S) UDS?)

Def: $S \subseteq \mathbb{R}^{n}$ is called bounded if
$\exists M>0$ such that

$$
S \subseteq B_{M}(\overrightarrow{0})=\left\{\vec{x} \in \mathbb{R}^{n}:\|\vec{x}\|<M\right\}
$$

S is called unbounded if it is not bounded

eg: y-axis $=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$ is unbounded

$$
\left(P f=\forall M>0, \exists(0, z M) \in y \text {-axis sit. }(0, z M) \notin B_{M}(\overrightarrow{0}) .\right)
$$

Def $S \subset \mathbb{R}^{n}$ is called path-connected if any two points in S can be connected by a curve in S.
path-
connected

cannot joint by a cave completely

eq: $S=\left\{(x, y) \in \mathbb{R}^{2}=x^{2}-y^{2} \leqslant 1\right\}$ is path-connected $S_{1}=\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}-y^{2} \geq 1\right\}$ is not path-connected

S

S,

Remark: In topology, there is a different notion called "connected". Weill not discuss it.

Tho (Jordan Curve Theorem)
A single closed curve in \mathbb{R}^{2} divides \mathbb{R}^{2} into 2 path-connected components, with one bounded and one unbounded

Remark: "closed amu" means contruans curve $\vec{x}(t), a \leqslant t \leqslant b$ with $\vec{X}(a)=\vec{x}(b)$. And one can show that it is a "closed subset" in \mathbb{R}^{2}.
eg:
mubounded

