Polar Coordinates $\bar{m} \mathbb{R}^{2}$
$P=(x, y) \in \mathbb{R}^{2}$ can be represented by $(r \cos \theta, r \sin \theta)$
where $\quad r=\sqrt{x^{2}+y^{2}}=$ distance from origin
$\theta=$ angle from the positive x-axis to $\overrightarrow{O P}$ in counter-clockuise direction

Remarks: (i) $(r \cos \theta, r \sin \theta)=(r \cos (\theta+2 k \pi), r \sin (\theta+2 k \pi))$

$$
\text { for any } k \in \mathbb{Z}=\{\cdots,-2,-1,0,1,1, \cdots\}
$$

(ii) Fa $P=(0,0)$, then $\left\{\begin{array}{l}r=0 \\ \theta \text { is not well-defered }\end{array}\right.$
(iii) Fa our defn, we usually set

- $r \in[0, \infty) \quad(r \geqslant 0)$
- $\theta \in[0,2 \pi) \quad(0 \leqslant \theta<2 \pi)$

But in some book, $\left\{\begin{array}{l}r \in \mathbb{R} \text { (can be negative as au Textbook) } \\ \theta \in \mathbb{R}\end{array}\right.$

Change of Condinates famula

$$
\left\{\begin{array} { l }
{ x = r \operatorname { c o s } \theta } \\
{ y = r \operatorname { s i n } \theta }
\end{array} \quad \& \quad \left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad(\text { fa } x>0)
\end{array}\right.\right.
$$

Curves in Polar Condmates
eg: Circle of radius $r_{0}>0$, centered at origin
Polar Equation:

$$
r=r_{0} .
$$

Parametric Fame (ie polar)

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
r=r_{0} \\
\theta
\end{array}=t, \quad t \in[0,2 \pi]\right.
\end{array}\right] \begin{aligned}
& \left.\vec{x}(t)=\left(r_{0} \cos t, r_{0} \sin t\right)\right)
\end{aligned}
$$

eq. Half ray frame origin
Polar Equation

$$
\theta=\theta_{0}
$$

Parametric form (in polar)

$$
\left\{\begin{array}{l}
r=t, \quad t \in[0, \infty) \\
\theta=\theta_{0}
\end{array}\right.
$$

eq: Archimedes Spiral
$k>0$ is a constant.
Polar Equation
Parametric fam (m pole)

$$
r=k \theta
$$

$$
\left\{\begin{array}{l}
r=k t \\
\theta=t
\end{array} \quad t \in[0, \infty)\right.
$$

Remark: $\quad \vec{x}(t)=(r \cos \theta, r \sin \theta)=(k t \cos t, k t \sin t)=k(t \cos t, t \sin t)$
$\Rightarrow \vec{x}^{\prime}(t)=k(\cos t-t \sin t, \sin t+t \cos t)$ is the tangent vector at $\vec{x}(t)=k(t \cos t, \tan t)$.
$\left(\left(\gamma^{\prime}(t), \theta^{\prime}(t)\right)=(k, 1)\right.$ is not the tangent vector in $\left.\mathbb{R}^{2}\right)$
eg: $r=4 \cos \theta\left(\geqslant 0,-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}\right)$

$$
\begin{aligned}
& r=4 \cos \theta \\
\Rightarrow & r^{2}=4 r \cos \theta \\
\text { ie. } & x^{2}+y^{2}=4 x
\end{aligned}
$$

eg: $\quad r \cos \left(\theta-\frac{\pi}{4}\right)=\sqrt{2}$
\Downarrow

$$
\begin{aligned}
& r\left(\cos \theta \cos \frac{\pi}{4}+\sin \theta \sin \frac{\pi}{4}\right)=\sqrt{2} \\
\Rightarrow & \frac{r \cos \theta}{\sqrt{2}}+\frac{r \sin \theta}{\sqrt{2}}=\sqrt{2} \\
\Rightarrow & x+y=2
\end{aligned}
$$

Negative r
Our convention is $r \geq 0$.
But sometimes is convenient to allow $r<0$ by the interpretation

$$
\begin{aligned}
(x, y) & =(r \cos \theta, r \sin \theta) \\
& =(-|r| \cos \theta,-|r| \sin \theta) \\
& =-(|r| \cos \theta,|r| \sin \theta) \quad(=(|r| \cos (\theta+\pi),|r| \sin (\theta+\pi))
\end{aligned}
$$

eq: $r=-2, \theta=\frac{\pi}{6} \quad(x, y)=\left(-2 \cos \frac{\pi}{6},-2 \sin \frac{\pi}{6}\right)=-(\sqrt{3}, 1)=(-\sqrt{3},-1)$
eg:

$$
\begin{aligned}
r & =1-(1+\varepsilon) \cos \theta, \quad \varepsilon>0 \\
& =1-Q \cos \theta, \quad a=1+\varepsilon>1
\end{aligned}
$$

Sole:
Case $1 \quad r \geqslant 0$

$$
\Rightarrow \quad 1-a \cos \theta \geq 0 \Rightarrow \cos \theta \leqslant \frac{1}{a}<1
$$

$\Rightarrow \theta$ cannot run through the whole interval $[0,2 \pi]$ but only $[\delta, 2 \pi-\delta]$ where $\delta=\cos ^{-1}\left(\frac{1}{a}\right)$.

$$
r=1-a \cos \theta
$$

Cave 2 $\quad r<0,0 \leqslant \theta<\delta \quad 2 \pi-\delta<\theta \leqslant 2 \pi$

$$
\begin{aligned}
& r=1-a \cos \theta \\
& |\gamma|=a \cos \theta-1 \\
& \quad|r|=a-1 \quad \text { fa } \theta=0 \& 2 \pi
\end{aligned}
$$

So if cure allow $r \in \mathbb{R}$, then $r=1-a \cos \theta$ can be defined $f a$ all $\theta \in[0,2 \pi]$ \& the curve becomes a curve wish self-intersection:

Condiuates Systems mu \mathbb{R}^{3} (generalizing Polar condiuates)

Cylindrical Coordinates

$$
(x, y, z) \longrightarrow(r, \theta, z)
$$

where $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$ ie. (r, θ) is polar condensates fou $x y$-plane.

Facula

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{array}\right.
$$

eg: $r=r_{0}$ constant $i s$ the equation for the cefluider in the figure.

eg Helix $(a \cos t, a \sin t, b t) \quad(a>0, b \in \mathbb{R})$
can be represented in cyfuidral conduiates by

$$
\left\{\begin{array}{l}
r=a \\
\theta=t \\
z=b t
\end{array} \quad t \in[0,2 \pi]\right.
$$

(Ex: Sketch the curve)

Spherical Condüates
$P=(x, y, z) \in \mathbb{R}^{3}$ can lee replesented by
$\rho=$ distance from crigim $=\sqrt{x^{2}+y^{2}+z^{2}}$
$\theta=\theta$ as in cyliudrical cordicates
$\phi=$ augle from praticue z-axis to $\overrightarrow{O P}$.

Remark: $\phi \in[0, \pi]$

Fanulae

$$
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right.
$$

(Tatrial for Egs)

Topological Terminology in \mathbb{R}^{n}
Ref. $B_{\varepsilon}\left(\vec{x}_{0}\right)=\left\{\vec{x} \in \mathbb{R}^{n}=\left\|\vec{x}-\vec{x}_{0}\right\|<\varepsilon\right\}$ is called the
Open ball of radius ε and centered at \vec{x}_{0}

- $\overline{B_{\varepsilon}\left(\vec{x}_{0}\right)}=\left\{\vec{x} \in \mathbb{R}^{n}=\left\|\vec{x}-\vec{x}_{0}\right\| \leqslant \varepsilon\right\}$ is called the
closed ball of radius ε and centered at \vec{x}_{0}

Remark $=$ If $n=2, \quad B_{\varepsilon}\left(\vec{x}_{0}\right), \overline{B_{\varepsilon}\left(\vec{x}_{0}\right)}$ are referred as open disk, closed disk and denoted by $D_{\varepsilon}\left(\vec{x}_{0}\right), \overline{D_{\varepsilon}\left(\overrightarrow{x_{0}}\right)}$ in some textbooks.
 the dotted "lime" are not inclined
 "line" are included

Recall notation: " \exists " : there exists)

$$
\text { " } \forall^{\prime \prime}=f o r \text { all }
$$

Def: Let S be a set in \mathbb{R}^{n}.
(1) The interim of S is the set

$$
\operatorname{Int}(S)=\left\{\vec{x} \in \mathbb{R}^{n}: \exists \varepsilon>0 \text { s.t. } \quad B_{\varepsilon}(\vec{x}) \subset S\right\}
$$

Points in Int (S) are called interica pouts of S
(2) The exterior of S is the set

$$
\operatorname{Ext}(S)=\left\{\vec{x} \in \mathbb{R}^{n}: \mp \varepsilon>0 \text { st. } B_{\varepsilon}(\vec{x}) \subset \mathbb{R}^{n} \backslash S\right\}
$$

Points in Ext (S) are called exterior points of S
(3) The boundary of S is the set

$$
\partial S=\left\{\vec{x} \in \mathbb{R}^{n}: \forall \varepsilon>0 \text { s.t. } \begin{array}{l}
B_{\varepsilon}(\vec{x}) \cap S \neq \phi, \& \\
B_{\varepsilon}(\vec{x}) \cap\left(\mathbb{R}^{n} \mid S\right) \neq \phi
\end{array}\right\}
$$

Points on ∂S are called boundary points of S
eg: $S=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leqslant 4\right\} \subset \mathbb{R}^{2}$

$A=$ boundary point $C=$ boundary point
$B=$ interior point $D=$ extern point

$$
\begin{aligned}
& \text { Int }(S)=\left\{(x, y) \in \in \mathbb{R}^{2}: 1<x^{2}+y^{2}<4\right\} \\
& \text { Ext }(S)=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<102 x^{2}+y^{2}>4\right\} \\
& \partial S=\left\{(x, y) \in \in \mathbb{R}^{2}: x^{2}+y^{2}=1 \text { or } x^{2}+y^{2}=4\right\}
\end{aligned}
$$

Prep let $S \subset \mathbb{R}^{n}$. Then
(1) $\mathbb{R}^{n}=$ disjoint union of $\operatorname{Int}(S), \operatorname{Ext}(S)$ and ∂S
(2)

$$
\begin{aligned}
& \operatorname{Int}(S) \subseteq S \\
& \operatorname{Ext}(S) \subseteq \mathbb{R}^{n} \backslash S
\end{aligned}
$$

(3) A point on ∂S may a may not be in S
(Fa statement (3), see points $A+C$ in the above eg.)

Def A set $S \subset \mathbb{R}^{n}$ is called
(1) open if $\forall \vec{x} \in S, \exists \varepsilon>0$ such that $B_{\varepsilon}(\vec{x}) \subseteq S$
(2) closed if $\mathbb{R}^{n} \backslash S$ is open

Equivalent deffuition:
(1) S open $\Leftrightarrow S=\operatorname{Int}(S)$
(2) S closed $\Leftrightarrow S=\operatorname{Int}(S) \cup \partial S$
eg Is $S=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leqslant 4\right\}$ open a closed?
Answer: Not open, and
Not closed!

