Polar Coordinates in R²

$$P = (x,y) \in IR^{2} \quad \text{can be represented by}$$

$$(root, route)$$
where
$$r = \sqrt{x^{2} + y^{2}} = \text{distance from origin}$$

$$\theta = \text{angle from the positive x-axis to OP}$$

$$\tilde{n} \quad \text{counter-clockwise direction}$$

$$\frac{\text{Runarks}:}{(1)} (\text{rcm0}, \text{rain0}) = (\text{rcm}(\Theta + 2k\pi), \text{rain}(\Theta + 2k\pi))$$
for any $k \in \mathbb{Z} = 1 \dots, 27 + 10, 1/2, \dots$

cii) For P=(0,0), then $r = 0$

 $1 \in i$ not well-dofined

(iii) For our defn, we usually set

 $r \in [0, \infty)$ ($r \ge 0$)

 $0 \in [0, 2\pi)$ ($0 \le 0 < 2\pi$)

But in some book, $r \in R$ (can be nogetine as in Textbook)

 $csee later examples$)

 $\theta \in R$

<u>Remark</u>: $\vec{X}(t) = (rase, raine) = (kt cost, ktaint) = k(tast, taut)$ $<math>\Rightarrow \vec{X}(t) = k(ast - taint, suit + tast)$ is the tangent vota at $\vec{X}(t) = k(tast, taint)$. $((\vec{X}(t), \theta(ts)) = (k, 1)$ is not the tangent vector in \mathbb{R}^2)

Negative r
Our convention is
$$r \ge 0$$
.
But sometimes is convenient to allow $r < 0$ by the interpretation
 $(X, Y) = (r \cos 0, r \sin 0)$
 $= (-|r| \cos 0, -|r| \sin 0)$ $(= (|r|(\cos(0+\pi), |r| \sin (0+\pi)))$

$$\underline{Q}_{1}: \quad k = 1 - (1+\epsilon) \cos \theta , \quad \epsilon > 0$$
$$= 1 - Q \cos \theta , \quad \alpha = |+\epsilon > 1$$

 \Rightarrow Θ cannot run through the whole interval [0,27] but only [5,27-5] where $\delta = ces^{-1}(\frac{1}{a})$.

 $r = 1 - \alpha \cos \theta$

 $G_{abo 2} \qquad \gamma < 0 , \quad 0 \le 0 < 5 \quad \epsilon \quad 2\pi - \delta < 8 \leq 2\pi$

 $r = (-\alpha clo\theta)$ $|r| = \alpha co\theta - 1$ $|r| = \alpha - 1 \quad fa \quad \theta = 0 \\ \approx 2\pi$

So if we allow rER, then $r = 1 - a \cos \theta$ can be defined for all $\theta \in [0, 2\pi]$ so the curve becomes a curve with <u>self-intersection</u>:

Spharical Conducates

$$P = (X, Y, Z) \in \mathbb{R}^{3}$$
 can be represented by
 $g = distance from origin = \sqrt{x^{2} + y^{2} + z^{2}}$
 $\Theta = \Theta$ as in cylindrical coordinates
 $\Phi = augle from positive Z-axis$
 $to \ \overrightarrow{OP}$.
Remark: $\Phi \in [0, TT]$
Famulae
Famulae

 $X = p \sin \phi \cos \Theta$ $Y = p \sin \phi \sin \theta$ $Z = p \cos \phi$

(Tutinial for Egs)

Topological Terminology in
$$\mathbb{R}^{n}$$

 $\boxed{\text{Def}} \cdot \mathbb{B}_{\varepsilon}(\vec{x_{0}}) = \{\vec{x} \in \mathbb{R}^{n} : \|\vec{x} - \vec{x_{0}}\| < \varepsilon\} \text{ is called the}$
 $\underbrace{\text{Open ball}}_{\text{of radius}} \varepsilon \text{ and centered at } \vec{x_{0}}$
 $\cdot \overline{\mathbb{B}_{\varepsilon}(\vec{x_{0}})} = \{\vec{x} \in \mathbb{R}^{n} : \|\vec{x} - \vec{x_{0}}\| \le \varepsilon\} \text{ is called the}$
 $\underbrace{\text{losed ball}}_{\text{of radius}} \varepsilon \text{ and centered at } \vec{x_{0}}$

 $\frac{\text{Remark}}{\text{Open disk}} = \text{If } n=2, \quad B_{\varepsilon}(\overline{x_0}), \quad B_{\varepsilon}(\overline{x_0}) \text{ are referred as} \\ \frac{\text{Open disk}}{D_{\varepsilon}(\overline{x_0}), \quad D_{\varepsilon}(\overline{x_0})} \text{ and denoted bg} \\ D_{\varepsilon}(\overline{x_0}), \quad D_{\varepsilon}(\overline{x_0}) \text{ in some faxtbooks}. \end{cases}$

UG:
$$S=\{(x,y)\in\mathbb{R}^2: | < x^2+y^2 \le 4\} \subset \mathbb{R}^2$$

 $A = boundary point C = boundary point$
 $B = interior point D = exterior point$
 $Int(S)=\{(x,y)\in\mathbb{R}^2: | < x^2+y^2 < 4\}$
 $Ext(S)=\{(x,y)\in\mathbb{R}^2: x^2+y^2 < 4\}$
 $OS = \{(x,y)\in\mathbb{R}^2: x^2+y^2=4\}$

Def A set
$$S \subset \mathbb{R}^n$$
 is called
(1) open if $\forall \vec{x} \in S$, $\exists \epsilon > 0$ such that $B_{\epsilon}(\vec{x}) \leq S$
(2) closed if $\mathbb{R}^n \setminus S$ is open

$$\frac{\text{Equivalent dofinition}}{(1) \quad \text{S open} \Leftrightarrow S = \text{Int}(S)}$$
(z) $\text{S closed} \Leftrightarrow S = \text{Int}(S) \cup \partial S$
(check!)

eq Is
$$S=\{(x,y)\in\mathbb{R}^2: |< x^2+y^2 \leq 4\}$$
 open a closed?
Answer: Not open, and
Not closed!
(Similar to EJE, of closed (open)
A closed not open, not closed (open)