Math 2010A Advanced Calculus I
Differential Calculus of Functions of Several variables.

$$
f(x, \underbrace{y), f(x, y, z)}_{\text {manly }}, \underbrace{f\left(x_{1}, \cdots, x_{n}\right)}_{n=2,3 \text { (most of the tunes) }}
$$

Vectas in $\mathbb{R}^{n}=\vec{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\begin{aligned}
\mathbb{R}^{n} & =\mathbb{R} x \cdots x \mathbb{R} \quad(n \text { copies of } \mathbb{R}) \\
& =\left\{\left(x_{1}, \cdots, x_{n}\right): x_{i} \in \mathbb{R} \quad f_{n} \quad i=1, \cdots, n\right\}
\end{aligned}
$$

Remarks: :(i) In Textbook, "bold face" \boldsymbol{x} is used to denote a vesta.
(ii) In tight school, $\overrightarrow{A B}$ is a vector with initial point A \& terminal point B.
Fr $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$ is a vecta with
 initial point $A=0=(0, \cdots, 0) \&$ terminal pout $B=\left(x_{1}, \cdots, x_{n}\right)$.
(iii) \mathbb{R}^{n} is called Cartesian product of n-copies of \mathbb{R}. $\left(X_{1}, \cdots, X_{n}\right)$ Cartesion/rectangular condirates of the point.
eg: \mathbb{R}^{2}

Basic Operations of Vectas
Let

$$
\begin{aligned}
& \vec{a}=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n} \\
& \vec{b}=\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{R}^{n} \\
& r \in \mathbb{R}
\end{aligned}
$$

Equality

$$
\vec{a}=\vec{b} \Leftrightarrow a_{i}=b_{i} \quad f a \quad i=1, \cdots, n .
$$

Addition

$$
\vec{a}+\vec{b}=\left(a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right)
$$

Scalar Multiplication

$$
r \stackrel{\rightharpoonup}{a}=\left(r a_{1}, \cdots, r a_{n}\right)
$$

Subtraction

$$
\begin{aligned}
\vec{a}-\vec{b} & =\vec{a}+(-1) \vec{b} \\
& =\left(a_{1}-b_{1}, \cdots, a_{n}-b_{n}\right)
\end{aligned}
$$

(Parallelogram law)

(Ex: What is $\vec{a}-\vec{b}$?)
length, Dot (Inner) Product in \mathbb{R}^{n}
Defn: Let $\vec{a}=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n}$

$$
\vec{b}=\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{R}^{n}
$$

Then dot product (or user product)

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

(Hare to waite the dot!)
In particular,

$$
\vec{a} \cdot \vec{a}=a_{1}^{2}+\cdots+a_{n}^{2} \stackrel{\operatorname{def}}{=}\|\vec{a}\|^{2}
$$

$\|\vec{a}\|=\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}$ is called the length/magnitude of the vector \vec{a}.
(In Textbook, it's denoted by $|\vec{a}|$.)

Remark: Another notation far dot (inner) product

$$
\langle\vec{a}, \vec{b}\rangle=\vec{a} \cdot \vec{b}
$$

Properties of Dot Product
Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^{n}, r \in \mathbb{R}$. Then
(1) $(\vec{a}+\vec{b}) \cdot \vec{c}=\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}$

$$
\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}
$$

(2) $(r \vec{a}) \cdot \vec{b}=\vec{a} \cdot(r \vec{b})=r(\vec{a} \cdot \vec{b})$
(3) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
zerovecta
(4) $\vec{a} \cdot \vec{a} \geqslant 0$ and "equality holds" $\Leftrightarrow \vec{a}=\overrightarrow{0}=(0 ; ; 0)$
(5) $\vec{a} \cdot \vec{a}=\|\vec{a}\|^{2}$
(6) $\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$
where $\theta=$ angle between \vec{a} \& \vec{b}

Hence, if $\vec{a}, \vec{b} \neq \overrightarrow{0}$,

$$
\vec{a} \cdot \vec{b}=0 \Leftrightarrow \cos \theta=0 \Leftrightarrow \vec{a} \perp \vec{b} \text { (perpendicular) }
$$

Remarks (i) $F a n=2,3,(5) \&(6)$ are geometric properties of \mathbb{R}^{n}.
(ii) For $n \geqslant 4$, $\|\vec{a}\|$ in (5) \& (6) is defused before and the θ in (6) is the definition
$\theta \stackrel{\operatorname{def}^{-1}}{=} \operatorname{ces}^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|}\right) \quad$ fa tight ctimeusional
(iii) If $\|\vec{u}\|=1$, then \vec{u} is called a unit vecta.
eg: $\hat{i}=(1,0,0)$ $\left.\begin{array}{l}\hat{j}=(0,1,0) \\ \hat{k}=(0,0,1)\end{array}\right\}$ are unit rectus in \mathbb{R}^{3}.

Pf of (6) (for $n \leqslant 3$)
(Assume $0<\theta \leqslant \frac{\pi}{2}$)

$$
\begin{aligned}
\|\vec{b}-\vec{a}\|^{2} & =(\vec{b}-\vec{a}) \cdot(\vec{b}-\vec{a})=\vec{b} \cdot \vec{b}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{a} \cdot \vec{a} \\
& =\|\vec{b}\|^{2}-2 \vec{a} \cdot \vec{b}+\|\vec{a}\|^{2}
\end{aligned}
$$

From the figure

$$
\begin{aligned}
\|\vec{b}-\vec{a}\|^{2} & =(\|\vec{a}\|-\|\vec{b}\| \cos \theta)^{2}+\|\vec{b}\|^{2} \sin ^{2} \theta \\
& =\cdots=\|\vec{a}\|^{2}-2\|\vec{a}\|\|\vec{b}\| \cos \theta+\|\vec{b}\|^{2} \\
\Rightarrow \quad \vec{a} \cdot \vec{b} & =\|\vec{a}\|\|\vec{b}\| \cos \theta
\end{aligned}
$$

eg: Suppress $\vec{V} \& \vec{W}$ are vectas of the same length.
Show that $(\vec{V}+\vec{W}) \cdot(\vec{V}-\vec{W})=0$.
Sole: $\quad(\vec{V}+\vec{W}) \cdot(\vec{V}-\vec{W})=\vec{V} \cdot \vec{V}+\vec{W} \cdot \vec{V}-\vec{V} \cdot \vec{W}-\vec{W} \cdot \vec{W}$
$=\|\vec{V}\|^{2}-\|\vec{W}\|^{2}=0$ by asolueption that

$$
\|\vec{V}\|=\|\vec{W}\|
$$

eg:

$A B$ is diameter, C on the circle show that $\angle A C B=90^{\circ}=\frac{\pi}{2}$

Sole:

$$
\begin{aligned}
& \overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C} \\
& \overrightarrow{B C}=\overrightarrow{B O}+\overrightarrow{O C} \\
& A B=\text { diameter } \Rightarrow \overrightarrow{A O}=-\overrightarrow{B O}
\end{aligned}
$$

Then

$$
\begin{aligned}
\overrightarrow{A C} \cdot \overrightarrow{B C} & =(\overrightarrow{A O}+\overrightarrow{O C}) \cdot(\overrightarrow{B O}+\overrightarrow{O C}) \\
& =(\overrightarrow{A O}+\overrightarrow{O C}) \cdot(-\overrightarrow{A O}+\overrightarrow{O C}) \\
& =-\|\overrightarrow{A O}\|^{2}+\|\overrightarrow{O C}\|^{2}
\end{aligned}
$$

$=0$ because $A \& C$ are on the circle

$$
\Rightarrow \quad \angle A C B=\frac{\pi}{2}
$$ $\& O=$ center.

*

Two inequalities (Au's Book §1.2)
Canchy-Schwarz Inequality
Let $\quad \vec{a}, \vec{b} \in \mathbb{R}^{n}$. Then $|\vec{a} \cdot \vec{b}| \leqslant\|\vec{a}\|\|\vec{b}\|$
ie. $\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leqslant \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}$

Equality holds

$$
\stackrel{\rightharpoonup}{a}=r \stackrel{\rightharpoonup}{b} \quad a \quad \vec{b}=r \vec{a}
$$

$$
|\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}|=\|\stackrel{\rightharpoonup}{a}\|\|\vec{b}\|
$$

fa some $r \in \mathbb{R}$

Pf: Case I If $\vec{a}=\overrightarrow{0} a \vec{b}=\overrightarrow{0}$, then both sides are 0 , equality holds \& $\vec{a}=0 \vec{b}$ a $\vec{b}=0 \vec{a}$.

Case 2 $\vec{a} \neq \overrightarrow{0} \& \vec{b} \neq \overrightarrow{0}$
Let $f(t)=\|t \vec{a}-\vec{b}\|^{2} \geqslant 0 \quad f a \quad t \in \mathbb{R}$
Then $0 \leqslant f(t)=(t \vec{a}-\vec{b}) \cdot(t \vec{a}-\vec{b})$

$$
\begin{aligned}
& =t^{2}\|\vec{a}\|^{2}-2 t \vec{a} \cdot \vec{b}+\|\vec{b}\|^{2} \\
\Rightarrow \quad \Delta & =(-2 \vec{a} \cdot \vec{b})^{2}-4\|\vec{a}\|^{2}\|\vec{b}\|^{2} \leqslant 0
\end{aligned}
$$

(discriminant of the quadratic)

$$
\Rightarrow \quad|\vec{a} \cdot \vec{b}| \leqslant\|\vec{a}\|\|\stackrel{\rightharpoonup}{b}\|
$$

Equality holds $\Leftrightarrow \Delta=0$
$\Leftrightarrow f(t)$ has a repeated root $r \in \mathbb{R}$

$$
\begin{aligned}
& \Leftrightarrow \quad\|r \vec{a}-\vec{b}\|^{2}=f(\vec{r})=0 \\
& \Leftrightarrow \quad \vec{b}=\overrightarrow{r a}
\end{aligned}
$$

Remark: Cauchy-Schwonz inequality \Rightarrow

$$
\left.-1 \leqslant \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|} \leqslant 1 \quad \text { (provided } \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}\right)
$$

\Rightarrow The faneula $\theta=\cos ^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|}\right)$ defining the angle between $\vec{a} \& \vec{b}$ (in dim, $n \geq 4$) is well-defired.
(If $n \leqslant 3$, we've proved the famula)

