MATH2010 Advanced Calculus I

Solution to Homework 4

14.2

Let $\mathbb{R}^2 = \{(x, y) | x, y \text{ are real number.} \}$. 31. a. \mathbb{R}^2 . b. $\mathbb{R}^2 \setminus (0, 0)$. 33. a. $\mathbb{R}^2 \setminus (\{x = 0\} \cup \{y = 0\})$. b. \mathbb{R}^2 .

Let $\mathbb{R}^3 = \{(x, y, z) | x, y, z \text{ are real number.} \}.$ 36. $a.\mathbb{R}^3 \setminus \{xyz \le 0\}.$ b. $\mathbb{R}^3.$ 38. $a.\mathbb{R}^3 \setminus (\{y = z = 0\}).$ b. $\mathbb{R}^3 \setminus (\{x = z = 0\} \cup \{y = z = 0\}).$

60. By

$$0 \le \left| xy \frac{x^2 - y^2}{x^2 + y^2} \right| \le \sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2} \cdot \frac{x^2 + y^2}{x^2 + y^2} = x^2 + y^2 \to 0,$$

as $(x, y) \to (0, 0)$

and the Sandwich Theorem, we can take f(0,0) = 0.

61. By changing to polar coordinates, we have

$$f(r\cos\theta, r\sin\theta) = \frac{r^3\cos\theta(\cos^2\theta - \sin^2\theta)}{r^2} \to 0, \qquad \text{as } r \to 0.$$

63. By changing to polar coordinates, we have

$$f(r\cos\theta, r\sin\theta) = \frac{r^2\sin^2\theta}{r^2} = \sin^2\theta,$$

hence the limit does not exist.

67. By changing to polar coordinates, we have

$$f(r\cos\theta, r\sin\theta) = \ln\left(3 - \frac{r^4\cos^2\theta\sin^2\theta}{r^2}\right) = \ln 3,$$
 as $r \to 0.$

hence we can take $f(0,0) = \ln 3$.

70. When $\sqrt{x^2 + y^2} < \epsilon$, we have

$$|f(x,y) - f(0,0)| \le |y| \le \sqrt{x^2 + y^2} < \epsilon.$$

76. When $\sqrt{x^2 + y^2 + z^2} < \epsilon = 0.008 < 1$, we have

$$|f(x, y, z) - f(0, 0, 0)| \le |x| \le \sqrt{x^2 + y^2 + z^2} < \epsilon.$$