MATH 2010 Advanced Calculus Suggested Solution of Homework 7

Exercises 14.6

Q4 Solution:

$$
7=x^{2}+2 x y-y^{2}+z^{2}=: f(x, y, z), \quad P_{0}=(1,-1,3) .
$$

Normal direction at P_{0} is given by the gradient of f at P_{0}

$$
\nabla f\left(P_{0}\right)=\left.\left(\partial_{x} f, \partial_{y} f, \partial_{z} f\right)\right|_{P_{0}}=\left.(2 x+2 y, 2 x-2 y, 2 z)\right|_{P_{0}}=(0,4,6) .
$$

(a) Tangent Plane to $f(x, y, z)=7$ at P_{0} is

$$
\partial_{x} f\left(P_{0}\right)\left(x-x_{0}\right)+\partial_{y} f\left(P_{0}\right)\left(y-y_{0}\right)+\partial_{z} f\left(P_{0}\right)\left(z-z_{0}\right)=0, \quad \Rightarrow \quad 2 y+3 z-7=0 .
$$

Alternatively, since normal direction is $(0,4,6)$, the tangent plane must take the following form

$$
0 \cdot x+4 \cdot y+6 \cdot z=c
$$

Since $P_{0}=(1,-1,3)$ is on this plane, one has $c=14$, which gives the same result;
(b) Normal Line to $f(x, y, z)=7$ at P_{0} is

$$
L(t)=P_{0}+t \nabla f\left(P_{0}\right)=(1,-1+4 t, 3+6 t), \quad t \in \mathbb{R} .
$$

Q6 Solution:

$$
0=x^{2}-x y-y^{2}-z=: f(x, y, z), \quad P_{0}=(1,1,-1) .
$$

Normal direction at P_{0} is given by the gradient of f at P_{0}

$$
\nabla f\left(P_{0}\right)=\left.\left(\partial_{x} f, \partial_{y} f, \partial_{z} f\right)\right|_{P_{0}}=\left.(2 x-y,-x-2 y,-1)\right|_{P_{0}}=(1,-3,-1) .
$$

(a) Tangent Plane to $f(x, y, z)=0$ at P_{0} is

$$
x-3 y-z+1=0,
$$

exact the same steps as Q4 (a);
(b) Normal Line to $f(x, y, z)=0$ at P_{0} is

$$
L(t)=P_{0}+t \nabla f\left(P_{0}\right)=(1+t, 1-3 t,-1-t), \quad t \in \mathbb{R}
$$

Q10 Solution:

$$
0=e^{-\left(x^{2}+y^{2}\right)}-z=: f(x, y, z), \quad P_{0}=(0,0,1)
$$

Normal direction at P_{0} is given by the gradient of f at P_{0}

$$
\nabla f\left(P_{0}\right)=\left.\left(\partial_{x} f, \partial_{y} f, \partial_{z} f\right)\right|_{P_{0}}=\left.\left(-2 x e^{-\left(x^{2}+y^{2}\right)},-2 y e^{-\left(x^{2}+y^{2}\right)},-1\right)\right|_{P_{0}}=(0,0,-1)
$$

Tangent Plane to $f(x, y, z)=0$ at P_{0} is

$$
z-1=0
$$

Q12 Solution:

$$
0=4 x^{2}+y^{2}-z=: f(x, y, z), \quad P_{0}=(1,1,5) .
$$

Normal direction at P_{0} is given by the gradient of f at P_{0}

$$
\nabla f\left(P_{0}\right)=\left.\left(\partial_{x} f, \partial_{y} f, \partial_{z} f\right)\right|_{P_{0}}=\left.(8 x, 2 y,-1)\right|_{P_{0}}=(8,2,-1)
$$

Tangent Plane to $f(x, y, z)=0$ at P_{0} is

$$
8 x+2 y-z-5=0
$$

Exercises 14.7

Q32 Solution:

$$
D(x, y)=x^{2}-x y+y^{2}+1
$$

Compute the first order derivatives

$$
\partial_{x} D=2 x-y, \quad \partial_{y} D=-x+2 y
$$

By solving the linear system

$$
\left\{\begin{array}{l}
0=\partial_{x} D=2 x-y \\
0=\partial_{y} D=-x+2 y
\end{array}\right.
$$

one obtain the critical point $(0,0)$. And note that

$$
\partial_{x}^{2} D=2, \quad \partial_{x y} D=-1, \quad \partial_{y}^{2} D=2
$$

so $\partial_{x}^{2} D>0$, and $\operatorname{det}\left(\partial^{2} D\right)>0$, one can conclude that $D(0,0)=1$ is the local minimum. In fact this is the global minimum, since

$$
D(x, y)=x^{2}-x y+y^{2}+1=x^{2}-x y+\frac{1}{4} y^{2}+\frac{3}{4} y^{2}+1=\left(x-\frac{1}{2} y\right)^{2}+\frac{3}{4} y^{2}+1 \geq 1
$$

For absolute maxima, it suffices to check the boundary because D can not achieve the maxima in the interior, otherwise it leads to contradiction.

- On $x=0,\left.D\right|_{x=0}=y^{2}+1$, and $\max _{x=0} D=D(0,4)=17$;
- On $y=4,\left.D\right|_{y=4}=x^{2}-4 x+17=(x-2)^{2}+13$, and $\max _{y=4} D=D(0,4)=D(4,4)=17$;
- On $x=y,\left.D\right|_{y=x}=x^{2}+1$, and $\max _{x=y} D=D(4,4)=17$.

In conclusion,
(A) D achieve its absolute minima at $(0,0)$, and the absolute minimum is 1 ;
(B) D achieve its absolute maxima at $(0,4)$ and $(4,4)$, and the absolute maximum is 17 .

Q34 Solution:

$$
T(x, y)=x^{2}+x y+y^{2}-6 x
$$

Compute the first order derivatives

$$
\partial_{x} T=2 x+y-6, \quad \partial_{y} T=x+2 y
$$

By solving the linear system

$$
\left\{\begin{array}{l}
0=\partial_{x} T=2 x+y-6 \\
0=\partial_{y} T=x+2 y
\end{array}\right.
$$

one obtain the critical point $(4,-2)$. And note that

$$
\partial_{x}^{2} T=2, \quad \partial_{x y} T=1, \quad \partial_{y}^{2} T=2
$$

so $\partial_{x}^{2} T>0$, and $\operatorname{det}\left(\partial^{2} T\right)>0$, one can conclude that $T(4,-2)=-12$ is the local minimum. In fact this is the global minimum, since
$T(x, y)=x^{2}+x y+y^{2}-6 x=\frac{1}{4} x^{2}+x y+y^{2}+\frac{3}{4} x^{2}-6 x+12-12=\left(\frac{1}{2} x+y\right)^{2}+\frac{3}{4}(x-4)^{2}-12 \geq-12$.
For absolute maxima, it suffices to check the boundary because T can not achieve the maxima in the interior:

- On $x=0,\left.T\right|_{x=0}=y^{2}$, and $\max _{x=0} T=T(0,3)=T(0,-3)=9$;
- On $y=-3,\left.T\right|_{y=-3}=x^{2}-9 x+9=\left(x-\frac{9}{2}\right)^{2}-\frac{45}{4}$, and $\max _{y=-3} T=T(0,-3)=9$;
- On $y=3,\left.T\right|_{y=3}=x^{2}-3 x+9=\left(x-\frac{3}{2}\right)^{2}+\frac{27}{4}$, and $\max _{y=3} T=T(5,3)=19$;
- On $x=5,\left.T\right|_{x=5}=y^{2}+5 y-5=\left(y+\frac{5}{2}\right)^{2}-\frac{45}{4}$, and $\max _{x=5} T=T(5,3)=19$;

In conclusion,
(A) T achieve its absolute minima at $(4,-2)$, and the absolute minimum is -12 ;
(B) T achieve its absolute maxima at $(5,3)$, and the absolute maximum is 19 .

Q36 Solution:

$$
f(x, y)=48 x y-32 x^{3}-24 y^{2}
$$

Compute the first order derivatives

$$
\partial_{x} f=48 y-96 x^{2}, \quad \partial_{y} f=48 x-48 y
$$

By solving the system

$$
\left\{\begin{array}{l}
0=\partial_{x} f=48 y-96 x^{2} \\
0=\partial_{y} f=48 x-48 y
\end{array}\right.
$$

one obtain the critical points $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. And note that

$$
\partial_{x}^{2} f=-192 x, \quad \partial_{x y} f=48, \quad \partial_{y}^{2} f=-48
$$

so $\operatorname{det}\left(\partial^{2} f\right)=48^{2}(4 x-1)$, and

- $\operatorname{det}\left(\partial^{2} f\right)(0,0)<0, f$ has a saddle point at $(0,0)$;
- $\operatorname{det}\left(\partial^{2} f\right)\left(\frac{1}{2}, \frac{1}{2}\right)>0$ and $\partial_{x}^{2} f\left(\frac{1}{2}, \frac{1}{2}\right)<0$, so f has a local maximum at $\left(\frac{1}{2}, \frac{1}{2}\right)$, and $f\left(\frac{1}{2}, \frac{1}{2}\right)=2$.

About the boundary:

- On $x=0,\left.f\right|_{x=0}=-24 y^{2}$, and $\max _{x=0} f=f(0,0)=0, \min _{x=0} f=f(0,1)=-24$;
- On $y=0,\left.f\right|_{y=0}=-32 x^{3}$, and $\max _{y=0} f=f(0,0)=0, \min _{y=0} f=f(1,0)=-32$;
- On $y=1,\left.f\right|_{y=1}=48 x-32 x^{3}-24$, note that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x} f\right|_{y=1}=48-96 x^{2},\left.\quad \frac{\mathrm{~d}}{\mathrm{~d} x} f\right|_{y=1}\left(x=\frac{\sqrt{2}}{2}\right)=0
$$

so $\max _{y=1} f=f\left(\frac{\sqrt{2}}{2}, 1\right)=16 \sqrt{2}-24, \min _{y=1} f=f(0,1)=-24$;

- On $x=1,\left.f\right|_{x=1}=48 y-32-24 y^{2}$, note that

$$
48 y-32-24 y^{2}=-24(y-1)^{2}-8
$$

so $\max _{x=1} f=f(1,1)=-8, \min _{x=1} f=f(1,0)=-32$;
In conclusion,
(A) f achieve its absolute maxima at $\left(\frac{1}{2}, \frac{1}{2}\right)$, and the absolute maxima is 2 ;
(B) f achieve its absolute minima at $(1,0)$, and the absolute minima is -32 .

Q39 Solution: In order for the integral to achieve its largest value, it suffices to ensure the non-negativity of the integrand. Since

$$
6-x-x^{2} \geq 0, \quad \text { for }-3 \leq x \leq 2, \text { and }<0 \text { otherwise }
$$

so the integral achieves its largest value for $a=-3, b=2$.
Alternatively one can treat the integral as a multivariable function

$$
f(a, b):=\int_{a}^{b}\left(6-x-x^{2}\right) \mathrm{d} x
$$

therefore

$$
\partial_{a} f=-6+a+a^{2}, \quad \partial_{b} f=6-b-b^{2}
$$

By solving the system

$$
\left\{\begin{array}{l}
0=\partial_{a} f=-6+a+a^{2} \\
0=\partial_{b} f=6-b-b^{2}
\end{array}\right.
$$

one obtain the critical points $(-3,-3),(-3,2),(2,-3)$, and $(2,2)$. The region we are considering is $a \leq b$, therefore $(2,-3)$ is omitted. Note that

$$
\partial_{a}^{2} f=1+2 a, \quad \partial_{a b} f=0, \quad \partial_{b}^{2} f=-1-2 b
$$

so $\operatorname{det}\left(\partial^{2} f\right)=-(1+2 a)(1+2 b)$, and

- $\operatorname{det}\left(\partial^{2} f\right)(-3,-3)<0, \operatorname{det}\left(\partial^{2} f\right)(2,2)<0, f$ has saddle points at $(-3,-3)$ and $(2,2)$;
- $\operatorname{det}\left(\partial^{2} f\right)(-3,2)=25>0$ and $\partial_{x}^{2} f(-3,2)=-5<0$, so f has a local maximum at $(-3,2)$, and $f(-3,2)=\frac{125}{6}=20 \frac{5}{6}$.

Note that on the boundary $a=b, f \equiv 0<f(-3,2)$, so the integral has its largest value at $a=-3, b=2$.

Q42 Solution:

$$
f(x, y)=x y+2 x-\ln \left(x^{2} y\right)
$$

On the first quadrant

$$
f(x, y)=x y+2 x-2 \ln (x)-\ln (y)
$$

Compute the first order derivatives

$$
\partial_{x} f=y+2-\frac{2}{x}, \quad \partial_{y} f=x-\frac{1}{y} .
$$

By solving the system

$$
\left\{\begin{array}{l}
0=\partial_{x} f=y+2-\frac{2}{x} \\
0=\partial_{y} f=x-\frac{1}{y}
\end{array}\right.
$$

one obtain the critical point $\left(\frac{1}{2}, 2\right)$. Note that

$$
\partial_{x}^{2} f=\frac{2}{x^{2}}, \quad \partial_{x y} f=1, \quad \partial_{y}^{2} f=\frac{1}{y^{2}}
$$

so $\operatorname{det}\left(\partial^{2} f\right)=\frac{2}{x^{2} y^{2}}-1$, and

$$
\operatorname{det}\left(\partial^{2} f\right)\left(\frac{1}{2}, 2\right)=1>0, \quad \partial_{x}^{2} f\left(\frac{1}{2}, 2\right)=8>0
$$

Consequently f takes on a local minimum at $\left(\frac{1}{2}, 2\right)$.
In fact f takes the global minimum at $\left(\frac{1}{2}, 2\right)$ in the first quadrant: Do the change of variables

$$
\begin{cases}a=x & 0<a<+\infty \\ b=x y & 0<b<+\infty\end{cases}
$$

then

$$
f=f(a, b)=b+2 a-\ln (a)-\ln (b)
$$

This change of variables separates the two variables, and note that

$$
b-\ln (b) \geq 1, \quad 2 a-\ln (a) \geq 1+\ln (2)
$$

so

$$
f \geq 2+\ln (2)=f(x=1 / 2, y=2)
$$

Q62 Solution: Use the parametric equations $x=3 \cos (t), y=2 \sin (t)$.
(i) The semiellipse $0 \leq t \leq \pi$;
(a) $f(t)=6 \cos (t)+6 \sin (t)=6 \sqrt{2} \sin (t+\pi / 4)$, so $\max f=f(\pi / 4)=6 \sqrt{2}$, and $\min f=f(\pi)=-6$;
(b) $g(t)=6 \cos (t) \sin (t)=3 \sin (2 t)$, so $\max g=g(\pi / 4)=3$, and $\min g=g(3 \pi / 4)=-3$;
(c) $h(t)=9 \cos ^{2}(t)+12 \sin ^{2}(t)=-\frac{3}{2} \cos (2 t)+\frac{21}{2}\left(\right.$ or simply $\left.h(t)=9+3 \sin ^{2}(t)\right)$, so $\max h=h(\pi / 2)=$ 12 , and $\min h=h(0)=h(\pi)=9 ;$
(ii) The quarter ellipse $0 \leq t \leq \pi / 2$;
(a) Again $\max f=f(\pi / 4)=6 \sqrt{2}$, but $\min f=f(0)=f(\pi / 2)=6$;
(b) Again $\max g=g(\pi / 4)=3$, but $\min g=g(0)=g(\pi / 2)=0$;
(c) Again $\max h=h(\pi / 2)=12$, and $\min h=h(0)=9$.

