6.3.1 Answers to Exercise.

1. (a) \mathbf{v} is an eigenvector of A:

•
$$A\mathbf{v} = \begin{bmatrix} 0\\0\\0\\0\end{bmatrix} = 0\mathbf{v}.$$

The corresponding eigenvalue is 0.

- (b) v is the zero column vector.It is not an eigenvector of A.
- (c) \mathbf{v} is not an eigenvector of A:

•
$$A\mathbf{v} = \begin{bmatrix} 4\\2\\1 \end{bmatrix}$$
 is not a scalar multiple of \mathbf{v} .

(d) \mathbf{v} is an eigenvector of A:

•
$$A\mathbf{v} = \begin{bmatrix} -3\\0\\3\\-3\end{bmatrix} = -3\mathbf{v}.$$

The corresponding eigenvalue is -3.

2. (a)
$$p_A(x) = x(x-4)$$
.
 $\lambda_1 = 0, \lambda_2 = 4$.

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

(b) $p_A(x) = (x-3)(x-9).$ $\lambda_1 = 3, \lambda_2 = 9.$

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} -4\\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 2\\1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

(c)
$$p_A(x) = (x+6)(x-6).$$

 $\lambda_1 = -6, \lambda_2 = 6.$

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 7\\ 2 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 .

 ${\cal A}$ is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

(d) $p_A(x) = (x + \sqrt{5})(x - \sqrt{5}).$ $\lambda_1 = -\sqrt{5}, \ \lambda_2 = \sqrt{5}.$

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} (-3 + \sqrt{5})/2 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} (-3 - \sqrt{5})/2 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

(e) $p_A(x) = -(x+1)(x-1)(x-3).$ $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = 3.$

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 .

An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_3 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(f)
$$p_A(x) = -(x+1)(x-1)(x-2).$$

 $\lambda_1 = -1, \ \lambda_2 = 1, \ \lambda_3 = 2.$

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_2 .

An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} -6/5\\ -3/5\\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_3 . A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$. (g) $p_A(x) = -(x-1)(x-2)(x-3)$. $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$.

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 .

An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_3 . A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(h)
$$p_A(x) = -(x-1)^2(x-2).$$

 $\lambda_1 = 1, \lambda_3 = 2.$

Two linearly independent eigenvectors of A with eigenvalue λ_1 are given by $\mathbf{u}_1 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1/2\\0\\1 \end{bmatrix}$. Every eigenvector of A with eigenvalue λ_1 is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ which is not the zero vector.

An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_3 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_1, \lambda_3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(i) $p_A(x) = -(x-2)^2(x-6)$. $\lambda_1 = 2, \ \lambda_3 = 6.$

> Two linearly independent eigenvectors of A with eigenvalue λ_1 are given by $\mathbf{u}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Every eigenvector of A with eigenvalue λ_1 is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ which is not the zero vector.

> An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} 1/3 \\ -2/3 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_3 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_1, \lambda_3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(j) $p_A(x) = -(x+1)^2(x-3)$. $\lambda_1 = -1, \, \lambda_3 = 3.$

> Two linearly independent eigenvectors of A with eigenvalue λ_1 are given by $\mathbf{u}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Every eigenvector of A with eigenvalue λ_1 is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ which is not the zero vector.

> An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a

non-zero scalar multiple of \mathbf{u}_3 .

A is diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_1, \lambda_3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(k) $p_A(x) = (x+9)(x+4)(x-4)(x-9).$ $\lambda_1 = -9, \ \lambda_2 = -4, \ \lambda_3 = 4, \ \lambda_3 = 9.$

An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 0\\1\\-3\\0 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_1 .

3

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 . An eigenvector of A with eigenvalue λ_3 is given by $\mathbf{u}_3 = \begin{bmatrix} 1\\0\\0\\ \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_3 . An eigenvector of A with eigenvalue λ_4 is given by $\mathbf{u}_4 = \begin{bmatrix} 0\\1\\3\\2 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_4 . A is diagonalizable. (1) $p_A(x) = (x-1)^3(x-2)$. $\lambda_1 = 1, \ \lambda_2 = 2.$ Three linearly independent eigenvectors of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Every eigenvector with eigenvalue λ_1 is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ whis is not the zero vector. An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} -1/2 \\ -1/2 \\ 0 \\ 1 \end{bmatrix}$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_2 . A is diagonalizable. A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{bmatrix}$. 3. (a) $p_A(x) = x^2 - 4x + 8$. (b) The eigenvalues of A are $\lambda_1 = 2 + 2i$, $\lambda_2 = 2 - 2i$. (c) An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} -1 - 2i \\ 1 \end{bmatrix}$. Every eigenvector of A with eigenvalue λ_1 is a non-zero scalar multiple of \mathbf{u}_1 . An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} -1+2i\\1 \end{bmatrix}$. Every eigenvector of A with eigenvalue λ_2 is a non-zero scalar multiple of \mathbf{u}_2 . (d) Note that $\mathbf{u}_1, \mathbf{u}_2$ are two linearly independent eigenvectors of A (as they are corresponding to distinct eigenvalues of A). Also note that A is a (2×2) -square matrix. Then A is diagonalizable. A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$. 4. —

5. (a) $p_A(x) = (x-1)^2$.

- (b) The only eigenvalue of A is $\lambda_1 = 1$.
- (c) An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Every eigenvector of A with eigenvalue λ_1 is a non-zero scalar multiple of \mathbf{u}_1 .

(d) A is not diagonalizable.

Reason: In order for A to be diagonalizable, it is necessary for a pair of linearly independent eigenvectors of A to be available. However, every eigenvector of A is a non-zero scalar multiple of \mathbf{u}_1 .

- 6. (a) $p_A(x) (x-2)^2(x+5)$.
 - (b) The eigenvalues of A are $\lambda_1 = 2$, $\lambda_2 = -5$.
 - (c) An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} -10\\ 3\\ 1 \end{bmatrix}$.

Every eigenvector of A with eigenvalue λ_1 is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A with eigenvalue λ_2 is given by $\mathbf{u}_2 = \begin{bmatrix} 4 \\ -4 \\ 1 \end{bmatrix}$.

Every eigenvector of A with eigenvalue λ_2 is a non-zero scalar multiple of \mathbf{u}_2 .

- (d) A is not diagonalizable.
- 7. (a) The only eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$.
 - (b) Two linearly independent eigenvectors of A with eigenvalue λ_1 are given by $\mathbf{u}_1 = \begin{bmatrix} -1\\1\\0\\-3/4 \end{bmatrix}$, $\mathbf{u}_2 \begin{bmatrix} -7/4\\0\\-3/4 \end{bmatrix}$.

Every eigenvector of A with eigenvalue λ_1 is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ which is not the zero vector.

• Two linearly independent eigenvectors of A with eigenvalue λ_2 are given by $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -8 \\ 5 \\ 1 \end{bmatrix}$, $\mathbf{u}_4 \begin{bmatrix} 1 \\ -10 \\ 6 \\ 0 \end{bmatrix}$.

Every eigenvector of A with eigenvalue λ_1 is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ which is not the zero vector.

(c) A is not diagonalizable.

Comment.

In order for A to be diagonalizable, it is necessary and sufficient for there to be five linearly independent eigenvectors of A.

Suppose there were five linearly independent eigenvectors of A, say, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$.

Without loss of generality, suppose the eigenvalue of \mathbf{v}_1 is λ_1 . Then amongst $\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$, there would be at most one of them of eigenvalue λ_1 . (If there were two of them, say, $\mathbf{v}_2, \mathbf{v}_3$, then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ would be three linearly independent column vectors belonging to $\mathcal{N}(A - \lambda_1 I_5)$, which is of dimension 2.)

Therefore, at least three of $\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ would have eigenvalue λ_2 . Then $\mathcal{N}(A - \lambda_2 I_5)$ would be of dimension at least 3.

But $\mathcal{N}(A - \lambda_2 I_5)$ is of dimension 2 only.

- 8. (a) $p_{A_{\alpha}}(x) = (1-x)(3-x)^2$.
 - (b) The eigenvalues of A_{α} are 1, 3.
 - (c) (Case 1). Suppose $\alpha \neq 1$ and $\alpha \neq -1$ and $\alpha \neq 2$.

An eigenvector of A_{α} with eigenvalue 1 is given by $\mathbf{u}_1 = \begin{bmatrix} -2/[(\alpha+1)(\alpha-2)]\\ -2\alpha/[(\alpha+1)(\alpha-2)]\\ 1 \end{bmatrix}$. Every eigenvector of A_{α} with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_1 . An eigenvector of A_{α} with eigenvalue 3 is $\mathbf{u}_2 = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$.

Every eigenvector of A_{α} with eigenvalue 3 is a non-zero scalar multiple of \mathbf{u}_2 .

• (Case 2).

An eigenvector of A_{-1} with eigenvalue 1 is given by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Every eigenvector of A_{-1} with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_1 . An eigenvector of A_{-1} with eigenvalue 3 is $\mathbf{u}_2 = \begin{bmatrix} 0\\0 \end{bmatrix}$.

Every eigenvector of A_{-1} with eigenvalue 3 is a non-zero scalar multiple of \mathbf{u}_2 .

An eigenvector of A_1 with eigenvalue 1 is given by $\mathbf{u}_1 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}$.

Every eigenvector of A_1 with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_1 .

Two linearly indepdent eigenvector of A_1 with eigenvalue 3 are given by $\mathbf{u}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Every eigenvector of A_1 with eigenvalue 3 is a linear combination of $\mathbf{u}_2, \mathbf{u}_3$ which is not the zero vector.

(Case 4).

(Case 3).

An eigenvector of A_2 with eigenvalue 1 is given by $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

Every eigenvector of A_2 with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_1 .

An eigenvector of A_2 with eigenvalue 3 is $\mathbf{u}_2 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Every eigenvector of A_2 with eigenvalue 3 is a non-zero scalar multiple of \mathbf{u}_2 .

- (d) A_{α} is diagonalizable if and only if $\alpha = 1$.
- 9. (a) The eigenvalues of A are $\lambda_1 = -1$, $\lambda_2 = 1$, $\lambda_3 = 2$.
 - An eigenvector of A with eigenvalue λ_1 is given by $\mathbf{u}_1 = \begin{bmatrix} 1\\ 1\\ 0\\ 1 \end{bmatrix}$. (b)
 - Two linearly independent eigenvectors of A with eigenvalue λ_2 are given by $\mathbf{u}_2 = \begin{bmatrix} 0\\3\\-1\\1\\0\\1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1\\-1\\1\\0\\1\\1 \end{bmatrix}$.
 - Two linearly independent eigenvectors of A with eigenvalue λ_3 are given by $\mathbf{u}_4 = \begin{bmatrix} 1/2 \\ -1/2 \\ 3/2 \\ 1 \end{bmatrix}$, $\mathbf{u}_5 = \begin{bmatrix} 1/2 \\ 1/2 \\ -5/2 \\ 0 \end{bmatrix}$.
 - (c) A is diagonalizable because A is a (5×5) -square matrix and $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5$ are five linearly independent eigenvectors of A. A diagonalization of A is given by $U^{-1}AU = E$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 & \mathbf{u}_5 \end{bmatrix}$, and E = diag(-1, 1, 1, 2, 2).
 - i. The eigenvalues of A^2 are $\mu_1 = 1$, $\mu_2 = 4$. (d) ii. The characteristic polynomial $p_{A^2}(x)$ of A^2 is given by $p_{A^2}(x) = -(x-1)^3(x-4)^2$.

• Three linearly independent eigenvectors of A with eigenvalue μ_1 are given by $\mathbf{u}_1 = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, iii.

$$\mathbf{u}_3 = \begin{bmatrix} 1\\ -1\\ 1\\ 0\\ 1 \end{bmatrix}.$$

- Two linearly independent eigenvectors of A with eigenvalue μ_2 are given by $\mathbf{u}_4 = \begin{bmatrix} 1/2 \\ -1/2 \\ 3/2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_5 = \begin{bmatrix} 1/2 \\ 1/2 \\ -5/2 \\ 0 \\ 1 \end{bmatrix}$.
- iv. A diagonalization of A^2 is given by $U^{-1}A^2U = E^2$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 & \mathbf{u}_5 \end{bmatrix}$, and $E^2 = \text{diag}(1, 1, 1, 4, 4)$.

10. —

- 11. (a) $c_0 = ad bc$, $c_1 = -(a+d)$, $c_2 = 1$.
 - (b) —

(c) i.
$$p_A(x) = (x - \lambda)^2$$
; $c_0 = \lambda^2$, $c_1 = -2\lambda$, $c_2 = 1$.
ii. $A^2 = -\lambda^2 I_2 + 2\lambda A$.
 $A^3 = -2\lambda^3 I_2 + 3\lambda^2 A$.
 $A^4 = -3\lambda^4 I_2 + 4\lambda^3 A$.
 $A^5 = -4\lambda^5 I_2 + 5\lambda^4 A$.

iii. Whenever n is an integer greater than 1, the equality $A^n = -(n-1)\lambda^n I_2 + n\lambda^{n-1}A$ holds.

- 12. (a) $p_A(x) = (x-1)^3(x-2)$ as polynomials.
 - (b) 1, 2 are the only eigenvalues of A.
 - (c) Write $\lambda_1 = 1$. The eigenspace of A corresponding to λ_1 is $\mathcal{N}(A - \lambda_1 I_2)$.

It is of dimension 1, and a basis for it is given by $\mathbf{v}_1 = \begin{bmatrix} -3/5 \\ -6/5 \\ 4/5 \\ 1 \end{bmatrix}$.

- Write $\lambda_2 = 2$. The eigenspace of A corresponding to λ_2 is $\mathcal{N}(A - \lambda_2 I_2)$. It is of dimension 1, and a basis for it is given by $\mathbf{v}_2 = \begin{bmatrix} -2/3 \\ -1 \\ 2/3 \end{bmatrix}$.
- (d) A is not diagonalizable.
- 13. (a) Comment.

A is a (5×5) -square matrix, and has five pairwise distinct eigenvalues, namely, $-2, -\sqrt{3}, 0, \sqrt{3}, 2$.

- (b) $p_A(x) = -12x + 7x^3 x^5$.
- (c) i. $A^5 = 7A^3 12A$. ii. $A^{10} = 175A^4 - 444A^2$.
- 14. (a) i. $\alpha = 2, \beta = 8.$ ii. $p_A(x) = x^2 - 2x - 8.$ The eigenvalues of A are -2, 4.

iii. A diagonalization of A is given by $U^{-1}AU = \text{diag}(4, -2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

$$\lambda = 4, \ \mu = -2.$$

iv.
$$x_n = \frac{4^n}{6} + (-1)^{n-1} \cdot \frac{2^{n-1}}{3}$$
 for each natural number n .

- (b) i. $x_n = 2(-1)^{n+1} + 2^{n+1}$ for each natural number n. ii. $x_n = -2^{n+2} + 3^{n+1}$ for each natural number n. iii. $x_n = 1 + 2^n + 3^n$ for each natural number n.
- 15. (a) **x** is an eigenvector of B with eigenvalue $c_0 + c_1\lambda + c_2\lambda^2 + c_3\lambda^3$.
 - (b) i.
 - ii. **y** is an eigenvector of C with eigenvalue $\lambda + \lambda^{-1}$.
- 16. —
- 17. (a) True.
 - (b) False. One possible choice of counter-examples is $A = I_2$, $\lambda = 1$.
- 18. ——
- 19. —
- 20. —
- 21. —
- 22. —
- 23. (a)
 - (b) —
 - (c) $\mathcal{LS}(T \lambda I_6, \mathbf{z})$ is inconsistent.
 - (d) $\mathcal{LS}(H \mu I_6, \mathbf{y})$ is inconsistent.