6.3.1 Answers to Exercise.

1. (a) \mathbf{v} is an eigenvector of A :

- $A \mathbf{v}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]=0 \mathbf{v}$.

The corresponding eigenvalue is 0 .
(b) \mathbf{v} is the zero column vector.

It is not an eigenvector of A.
(c) \mathbf{v} is not an eigenvector of A :

- $A \mathbf{v}=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ is not a scalar multiple of \mathbf{v}.
(d) \mathbf{v} is an eigenvector of A :
- $A \mathbf{v}=\left[\begin{array}{c}-3 \\ 0 \\ 3 \\ 3 \\ -3\end{array}\right]=-3 \mathbf{v}$.

The corresponding eigenvalue is -3 .
2. (a) $p_{A}(x)=x(x-4)$.
$\lambda_{1}=0, \lambda_{2}=4$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, in which $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$.
(b) $p_{A}(x)=(x-3)(x-9)$.
$\lambda_{1}=3, \lambda_{2}=9$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-4 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, in which $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$.
(c) $p_{A}(x)=(x+6)(x-6)$.
$\lambda_{1}=-6, \lambda_{2}=6$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{l}7 \\ 2\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, in which $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$.
(d) $p_{A}(x)=(x+\sqrt{5})(x-\sqrt{5})$.
$\lambda_{1}=-\sqrt{5}, \lambda_{2}=\sqrt{5}$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}(-3+\sqrt{5}) / 2 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{c}(-3-\sqrt{5}) / 2 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, in which $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$.
(e) $p_{A}(x)=-(x+1)(x-1)(x-3)$.
$\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=3$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{c}0 \\ -3 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right]$.
(f) $p_{A}(x)=-(x+1)(x-1)(x-2)$.
$\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{c}-6 / 5 \\ -3 / 5 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right]$.
(g) $p_{A}(x)=-(x-1)(x-2)(x-3)$.
$\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.

An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right]$.
(h) $p_{A}(x)=-(x-1)^{2}(x-2)$.
$\lambda_{1}=1, \lambda_{3}=2$.
Two linearly independent eigenvectors of A with eigenvalue λ_{1} are given by $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 / 2 \\ 0 \\ 1\end{array}\right]$. Every eigenvector of A with eigenvalue λ_{1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ which is not the zero vector.
An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \lambda_{3}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right]$.
(i) $p_{A}(x)=-(x-2)^{2}(x-6)$.
$\lambda_{1}=2, \lambda_{3}=6$.
Two linearly independent eigenvectors of A with eigenvalue λ_{1} are given by $\mathbf{u}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Every eigenvector of A with eigenvalue λ_{1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ which is not the zero vector.
An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{c}1 / 3 \\ -2 / 3 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \lambda_{3}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right]$.
(j) $p_{A}(x)=-(x+1)^{2}(x-3)$.
$\lambda_{1}=-1, \lambda_{3}=3$.
Two linearly independent eigenvectors of A with eigenvalue λ_{1} are given by $\mathbf{u}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Every eigenvector of A with eigenvalue λ_{1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ which is not the zero vector.
An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \lambda_{3}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\right]$.
(k) $p_{A}(x)=(x+9)(x+4)(x-4)(x-9)$.
$\lambda_{1}=-9, \lambda_{2}=-4, \lambda_{3}=4, \lambda_{3}=9$.
An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}0 \\ 1 \\ -3 \\ 0\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{1}.

An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -4\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
An eigenvector of A with eigenvalue λ_{3} is given by $\mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 4\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{3}.
An eigenvector of A with eigenvalue λ_{4} is given by $\mathbf{u}_{4}=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 0\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{4}.
A is diagonalizable.
(l) $p_{A}(x)=(x-1)^{3}(x-2)$.
$\lambda_{1}=1, \lambda_{2}=2$.
Three linearly independent eigenvectors of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$. Every eigenvector with eigenvalue λ_{1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ whis is not the zero vector.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{c}-1 / 2 \\ -1 / 2 \\ 0 \\ 1\end{array}\right]$. Every eigenvector with the same eigenvalue is a non-zero scalar multiple of \mathbf{u}_{2}.
A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3} \mid \mathbf{u}_{4}\right]$.
3. (a) $p_{A}(x)=x^{2}-4 x+8$.
(b) The eigenvalues of A are $\lambda_{1}=2+2 i, \lambda_{2}=2-2 i$.
(c) An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-1-2 i \\ 1\end{array}\right]$. Every eigenvector of A with eigenvalue λ_{1} is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{c}-1+2 i \\ 1\end{array}\right]$. Every eigenvector of A with eigenvalue λ_{2} is a non-zero scalar multiple of \mathbf{u}_{2}.
(d) Note that $\mathbf{u}_{1}, \mathbf{u}_{2}$ are two linearly independent eigenvectors of A (as they are corresponding to distinct eigenvalues of A).
Also note that A is a (2×2)-square matrix.
Then A is diagonalizable.
A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, in which $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$.
4. \qquad
5. (a) $p_{A}(x)=(x-1)^{2}$.
(b) The only eigenvalue of A is $\lambda_{1}=1$.
(c) An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Every eigenvector of A with eigenvalue λ_{1} is a non-zero scalar multiple of \mathbf{u}_{1}.
(d) A is not diagonalizable.

Reason: In order for A to be diagonalizable, it is necessary for a pair of linearly independent eigenvectors of A to be available. However, every eigenvector of A is a non-zero scalar multiple of \mathbf{u}_{1}.
6. (a) $p_{A}(x)-(x-2)^{2}(x+5)$.
(b) The eigenvalues of A are $\lambda_{1}=2, \lambda_{2}=-5$.
(c) An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-10 \\ 3 \\ 1\end{array}\right]$.

Every eigenvector of A with eigenvalue λ_{1} is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A with eigenvalue λ_{2} is given by $\mathbf{u}_{2}=\left[\begin{array}{c}4 \\ -4 \\ 1\end{array}\right]$.
Every eigenvector of A with eigenvalue λ_{2} is a non-zero scalar multiple of \mathbf{u}_{2}.
(d) A is not diagonalizable.
7. (a) The only eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=2$.
(b) - Two linearly independent eigenvectors of A with eigenvalue λ_{1} are given by $\mathbf{u}_{1}=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}\left[\begin{array}{c}1 / 2 \\ -7 / 4 \\ 0 \\ -3 / 4 \\ 1\end{array}\right]$.

Every eigenvector of A with eigenvalue λ_{1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ which is not the zero vector.

- Two linearly independent eigenvectors of A with eigenvalue λ_{2} are given by $\mathbf{u}_{3}=\left[\begin{array}{c}1 \\ -8 \\ 5 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{4}\left[\begin{array}{c}1 \\ -10 \\ 6 \\ 0 \\ 1\end{array}\right]$.

Every eigenvector of A with eigenvalue λ_{1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ which is not the zero vector.
(c) A is not diagonalizable.

Comment.
In order for A to be diagonalizable, it is necessary and sufficient for there to be five linearly independent eigenvectors of A.
Suppose there were five linearly independent eigenvectors of A, say, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$.
Without loss of generality, suppose the eigenvalue of \mathbf{v}_{1} is λ_{1}. Then amongst $\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$, there would be at most one of them of eigenvalue λ_{1}. (If there were two of them, say, $\mathbf{v}_{2}, \mathbf{v}_{3}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ would be three linearly independent column vectors belonging to $\mathcal{N}\left(A-\lambda_{1} I_{5}\right)$, which is of dimension 2.)
Therefore, at least three of $\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ would have eigenvalue λ_{2}. Then $\mathcal{N}\left(A-\lambda_{2} I_{5}\right)$ would be of dimension at least 3.
But $\mathcal{N}\left(A-\lambda_{2} I_{5}\right)$ is of dimension 2 only.
8. (a) $p_{A_{\alpha}}(x)=(1-x)(3-x)^{2}$.
(b) The eigenvalues of A_{α} are 1,3 .
(c) - (Case 1). Suppose $\alpha \neq 1$ and $\alpha \neq-1$ and $\alpha \neq 2$.

An eigenvector of A_{α} with eigenvalue 1 is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-2 /[(\alpha+1)(\alpha-2)] \\ -2 \alpha /[(\alpha+1)(\alpha-2)] \\ 1\end{array}\right]$.
Every eigenvector of A_{α} with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A_{α} with eigenvalue 3 is $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Every eigenvector of A_{α} with eigenvalue 3 is a non-zero scalar multiple of \mathbf{u}_{2}.

- (Case 2).

An eigenvector of A_{-1} with eigenvalue 1 is given by $\mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
Every eigenvector of A_{-1} with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A_{-1} with eigenvalue 3 is $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Every eigenvector of A_{-1} with eigenvalue 3 is a non-zero scalar multiple of \mathbf{u}_{2}.

- (Case 3).

An eigenvector of A_{1} with eigenvalue 1 is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$.
Every eigenvector of A_{1} with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_{1}.
Two linearly indepdent eigenvector of A_{1} with eigenvalue 3 are given by $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Every eigenvector of A_{1} with eigenvalue 3 is a linear combination of $\mathbf{u}_{2}, \mathbf{u}_{3}$ which is not the zero vector.

- (Case 4).

An eigenvector of A_{2} with eigenvalue 1 is given by $\mathbf{u}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$.
Every eigenvector of A_{2} with eigenvalue 1 is a non-zero scalar multiple of \mathbf{u}_{1}.
An eigenvector of A_{2} with eigenvalue 3 is $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Every eigenvector of A_{2} with eigenvalue 3 is a non-zero scalar multiple of \mathbf{u}_{2}.
(d) A_{α} is diagonalizable if and only if $\alpha=1$.
9. (a) The eigenvalues of A are $\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2$.
(b) - An eigenvector of A with eigenvalue λ_{1} is given by $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right]$.

- Two linearly independent eigenvectors of A with eigenvalue λ_{2} are given by $\mathbf{u}_{2}=\left[\begin{array}{c}0 \\ 3 \\ -1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0 \\ 1\end{array}\right]$.
- Two linearly independent eigenvectors of A with eigenvalue λ_{3} are given by $\mathbf{u}_{4}=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 3 / 2 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -5 / 2 \\ 0 \\ 1\end{array}\right]$.
(c) A is diagonalizable because A is a (5×5)-square matrix and $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ are five linearly independent eigenvectors of A.
A diagonalization of A is given by $U^{-1} A U=E$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5}\right]$, and $E=\operatorname{diag}(-1,1,1,2,2)$.
(d) i. The eigenvalues of A^{2} are $\mu_{1}=1, \mu_{2}=4$.
ii. The characteristic polynomial $p_{A^{2}}(x)$ of A^{2} is given by $p_{A^{2}}(x)=-(x-1)^{3}(x-4)^{2}$.
iii. - Three linearly independent eigenvectors of A with eigenvalue μ_{1} are given by $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}0 \\ 3 \\ -1 \\ 1 \\ 0\end{array}\right]$,

$$
\mathbf{u}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0 \\
1
\end{array}\right]
$$

- Two linearly independent eigenvectors of A with eigenvalue μ_{2} are given by $\mathbf{u}_{4}=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 3 / 2 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -5 / 2 \\ 0 \\ 1\end{array}\right]$.
iv. A diagonalization of A^{2} is given by $U^{-1} A^{2} U=E^{2}$, in which $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5}\right]$, and $E^{2}=$ $\operatorname{diag}(1,1,1,4,4)$.

10. \qquad
11. (a) $c_{0}=a d-b c, c_{1}=-(a+d), c_{2}=1$.
(b) -
(c) i. $p_{A}(x)=(x-\lambda)^{2} ; c_{0}=\lambda^{2}, c_{1}=-2 \lambda, c_{2}=1$.
ii. $A^{2}=-\lambda^{2} I_{2}+2 \lambda A$.
$A^{3}=-2 \lambda^{3} I_{2}+3 \lambda^{2} A$.
$A^{4}=-3 \lambda^{4} I_{2}+4 \lambda^{3} A$.
$A^{5}=-4 \lambda^{5} I_{2}+5 \lambda^{4} A$.
iii. Whenever n is an integer greater than 1 , the equality $A^{n}=-(n-1) \lambda^{n} I_{2}+n \lambda^{n-1} A$ holds.
12. (a) $p_{A}(x)=(x-1)^{3}(x-2)$ as polynomials.
(b) 1,2 are the only eigenvalues of A.
(c) - Write $\lambda_{1}=1$.

The eigenspace of A corresponding to λ_{1} is $\mathcal{N}\left(A-\lambda_{1} I_{2}\right)$.
It is of dimension 1 , and a basis for it is given by $\mathbf{v}_{1}=\left[\begin{array}{c}-3 / 5 \\ -6 / 5 \\ 4 / 5 \\ 1\end{array}\right]$.

- Write $\lambda_{2}=2$.

The eigenspace of A corresponding to λ_{2} is $\mathcal{N}\left(A-\lambda_{2} I_{2}\right)$.
It is of dimension 1 , and a basis for it is given by $\mathbf{v}_{2}=\left[\begin{array}{c}-2 / 3 \\ -1 \\ 2 / 3 \\ 1\end{array}\right]$.
(d) A is not diagonalizable.
13. (a) Comment.
A is a (5×5)-square matrix, and has five pairwise distinct eigenvalues, namely, $-2,-\sqrt{3}, 0, \sqrt{3}, 2$.
(b) $p_{A}(x)=-12 x+7 x^{3}-x^{5}$.
(c) i. $A^{5}=7 A^{3}-12 A$.
ii. $A^{10}=175 A^{4}-444 A^{2}$.
14. (a) i. $\alpha=2, \beta=8$.
ii. $p_{A}(x)=x^{2}-2 x-8$.

The eigenvalues of A are $-2,4$.
iii. A diagonalization of A is given by $U^{-1} A U=\operatorname{diag}(4,-2)$, in which $U=\left[\mathbf{u}_{1} \mid \mathbf{u}_{2}\right]$, $\mathbf{u}_{1}=\left[\begin{array}{c}4 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. $\lambda=4, \mu=-2$.
iv. $x_{n}=\frac{4^{n}}{6}+(-1)^{n-1} \cdot \frac{2^{n-1}}{3}$ for each natural number n.
(b) i. $x_{n}=2(-1)^{n+1}+2^{n+1}$ for each natural number n.
ii. $x_{n}=-2^{n+2}+3^{n+1}$ for each natural number n.
iii. $x_{n}=1+2^{n}+3^{n}$ for each natural number n.
15. (a) \mathbf{x} is an eigenvector of B with eigenvalue $c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+c_{3} \lambda^{3}$.
(b) i.
ii. \mathbf{y} is an eigenvector of C with eigenvalue $\lambda+\lambda^{-1}$.
16. \qquad
17. (a) True.
(b) False. One possible choice of counter-examples is $A=I_{2}, \lambda=1$.
18. \qquad
19. \qquad
20. \qquad
21. \qquad
22. \qquad
23. (a)
(b)
(c) $\mathcal{L S}\left(T-\lambda I_{6}, \mathbf{z}\right)$ is inconsistent.
(d) $\mathcal{L S}\left(H-\mu I_{6}, \mathbf{y}\right)$ is inconsistent.

