6.3.1 Exercise: Eigenvalues, eigenvectors, and diagonalization.

1. Consider each pairs of square matrices and column vectors below, respectively labelled A, \mathbf{v} here.

Determine whether \mathbf{v} is an eigenvector of A. If it is, also determine the corresponding eigenvalue.
(a) $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$.
(c) $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & -1\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
(b) $A=\left[\begin{array}{rrrr}1 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 1 & 0 & -1 & 5 \\ 0 & 1 & 1 & 2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(d) $A=\left[\begin{array}{rrrrr}-13 & -25 & 3 & -17 & -4 \\ 6 & 11 & 0 & 8 & 2 \\ 7 & 13 & -3 & 8 & 1 \\ 5 & 10 & -3 & 6 & 1 \\ -11 & -20 & 3 & -13 & -2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right]$.
2. For the square matrix with real entries in each part below, denoted by A :-

- determine its characteristic polynomial $p_{A}(x)$,
- determine its eigenvalues $\lambda_{1}, \lambda_{2}, \cdots$, and
- determine all eigenvectors corresponding to the eigenvalue λ_{j} for each j, and
- provide a diagonalization for A with respect to some appropriate invertible square matrix, if A is diagonalizable.
(a) $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & -1 & 0\end{array}\right]$
(h) $A=\left[\begin{array}{ccc}3 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 0\end{array}\right]$
(k) $A=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 27 & 0 & 0 \\ 16 & 0 & 0 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}5 & 8 \\ 1 & 7\end{array}\right]$
(c) $A=\left[\begin{array}{ll}-8 & 7 \\ -4 & 8\end{array}\right]$
(f) $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -1 & -1\end{array}\right]$
(i) $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5\end{array}\right]$
(d) $A=\left[\begin{array}{cc}3 & 2 \\ -2 & -3\end{array}\right]$
(g) $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$
(j) $A=\left[\begin{array}{ccc}-3 & -2 & 2 \\ 4 & 3 & -4 \\ -2 & -2 & 1\end{array}\right]$
(l) $A=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -2 & 0 & 0 & 3\end{array}\right]$

3. Let $A=\left[\begin{array}{cc}3 & 5 \\ -1 & 1\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(x)$ of A.
(b) Write down the eigenvalues of A.
(c) For each eigenvalue of A, determine all its corresponding eigenvectors.
(d) Is A diagonalizable? Justify your answer. If A is diagonalizable, also give a diagonalization of A with respect to some appropriate invertible matrix.
4. With direct reference to the definition for the notion of eigenvalues, eigenvectors, and linear dependence/independence, prove the statements below:
(a) Let A be an $(n \times n)$-square matrix, λ_{1}, λ_{2} be pairwise distinct numbers, and $\mathbf{u}_{1}, \mathbf{u}_{2}$ be non-zero column vectors with n entries.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}$ are eigenvectors of A with eigenvalues λ_{1}, λ_{2} respectively. Then $\mathbf{u}_{1}, \mathbf{u}_{2}$ are linearly independent.
(b) Let A be an $(n \times n)$-square matrix, $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be pairwise distinct numbers, and $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ be non-zero column vectors with n entries.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are eigenvectors of A with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ respectively. Then $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly independent.
Remark. You may find that it is better to make use of the result in the previous part in an appropriate way.
(c) Let A be an $(n \times n)$-square matrix, $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ be pairwise distinct numbers, and $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ be non-zero column vectors with n entries.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are eigenvectors of A with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ respectively. Then $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are linearly independent.
Remark. You may find that it is better to make use of the result in the previous part in an appropriate way.
5. Let $A=\left[\begin{array}{ll}5 & -4 \\ 4 & -3\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(x)$ of A.
(b) Write down the eigenvalues of A.
(c) For each eigenvalue of A, determine all its corresponding eigenvectors.
(d) Is A diagonalizable? Justify your answer.
6. Let $A=\left[\begin{array}{rrr}0 & 0 & -20 \\ 1 & 0 & 16 \\ 0 & 1 & -1\end{array}\right]$.
(a) Find the characteristic polynomial $p_{A}(x)$ of A.
(b) Write down the eigenvalues of A.
(c) For each eigenvalue of A, determine all its corresponding eigenvectors.
(d) Is A diagonalizable? Justify your answer.
7. Let $A=\left[\begin{array}{rrrrr}0 & -2 & -2 & -4 & -6 \\ 16 & 22 & 21 & 39 & 58 \\ -9 & -12 & -11 & -22 & -33 \\ 3 & 4 & 4 & 11 & 13 \\ -4 & -5 & -5 & -11 & -14\end{array}\right]$.

Take for granted that the characteristic polynomial $p_{A}(x)$ of the matrix A is given by $p_{A}(x)=-(x-1)^{2}(x-2)^{3}$. Further take for granted that $A-I_{5}$ is row-equivalent to

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -\frac{1}{2} \\
0 & 1 & 1 & 0 & \frac{7}{4} \\
0 & 0 & 0 & 1 & \frac{3}{4} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and $A-2 I_{5}$ is row-equivalent to

$$
C=\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 8 & 10 \\
0 & 0 & 1 & -5 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Name all possible eigenvalues of A.
(b) Determine all eigenvectors of A.
(c) Is A diagonalizable? Justify your answer.
8. Let α be a number, and $A_{\alpha}=\left[\begin{array}{ccc}1 & 0 & 0 \\ \alpha & 3 & 0 \\ 1 & \alpha-1 & 3\end{array}\right]$.
(a) Write down the characteristic polynomial $p_{A_{\alpha}}(x)$ of the matrix A_{α}.
(b) What are the eigenvalues of A_{α} ?
(c) For each value of α, determine all possible eigenvectors of A_{α}.
(d) For which values of α is A diagonalizable? Justify your answer.
9. Let $A=\left[\begin{array}{rrrrr}41 & 2 & -5 & -11 & -33 \\ 33 & 3 & -4 & -10 & -27 \\ -2 & 0 & 2 & 1 & 1 \\ 41 & 2 & -5 & -10 & -34 \\ 39 & 2 & -5 & -11 & -31\end{array}\right]$.

Take for granted that the characteristic polynomial $p_{A}(x)$ of the matrix A is given by $p_{A}(x)=-(x-1)^{2}(x-2)^{2}(x+1)$. Further take for granted that:-

- $A+I_{5}$ is row-equivalent to $B=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$,
- $A-I_{5}$ is row-equivalent to $C=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3 & 1 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, and
- $A-2 I_{5}$ is row-equivalent to $D=\left[\begin{array}{ccccc}1 & 0 & 0 & -1 / 2 & -1 / 2 \\ 0 & 1 & 0 & 1 / 2 & -1 / 2 \\ 0 & 0 & 1 & -3 / 2 & 5 / 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Name all possible eigenvalues of A.
(b) Determine all eigenvectors of A.
(c) Show that A is diagonalizable. Also give a diagonalization of A.
(d) i. Name all possible eigenvalues of A^{2}.
ii. Write down the characteristic polynomial $p_{A^{2}}(x)$ of the matrix A^{2}.
iii. Determine all eigenvectors of A^{2}.
iv. Write down a diagonalization of A^{2}.

10. (a) Prove the statement (\sharp) :-
(\sharp) Let a_{1}, a_{2}, c be real numbers. Suppose $A=\left[\begin{array}{cc}a_{1} & c \\ c & a_{2}\end{array}\right]$, and $\alpha=\frac{a_{1}+a_{2}}{2}$, and $\beta=\frac{a_{1}-a_{2}}{2}$.
Then $p_{A}(x)=(x-\alpha)^{2}-\left(\beta^{2}+c^{2}\right)$ as polynomials.
(b) Hence, or otherwise, prove that the statement (\downarrow):
(দ) Let A be a (2×2)-square matrix with real entries. Suppose A is symmetric. Then the eigenvalues of A are real. Moreover A is diagonalizable with respect to some invertible (2×2)-square matrix with real entries.
11. Let a, b, c, d be numbers, and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Write $p_{A}(x)=c_{0}+c_{1} x+c_{2} x^{2}$. Here c_{0}, c_{1}, c_{2} stand for some appropriate numbers.
(a) Write down the values c_{0}, c_{1}, c_{2}. Leave your answers in terms of a, b, c, d.
(b) By direct calculation, verify that $c_{0} I_{2}+c_{1} A+c_{2} A^{2}=\mathcal{O}_{2 \times 2}$.
(c) Suppose A has one and only one eigenvalue, say, λ.
i. Express $p_{A}(x)$ in terms of λ. Give the values of c_{0}, c_{1}, c_{2} in terms of λ.
ii. Express $A^{2}, A^{3}, A^{4}, A^{5}$ in terms of λ, I_{2}, A.
iii. Conjecture a 'general formula' for A^{n} in terms of λ, I_{2}, A that holds whenever n is an integer greater than 1 . Prove your conjecture with mathematical induction.
12. Let $A=\left[\begin{array}{cccc}1 & -4 & -1 & -4 \\ 2 & 0 & 5 & -4 \\ -1 & 1 & -2 & 3 \\ -1 & 4 & -1 & 6\end{array}\right]$.

Take for granted its characteristic polynomial $p_{A}(x)$ is given by $p_{A}(x)=x^{4}-5 x^{3}+9 x^{2}-7 x+2$, and 1,2 are some of the roots of $p_{A}(x)$.
(a) Factorize $p_{A}(x)$ completely.
(b) What are the eigenvalues of A ? Justify your answer.
(c) Determine the eigenspaces of A explicitly, by naming a basis for each of them.
(d) Is A diagonalizable? Justify your answer.

13 . Let A be a (5×5)-square matrix.
Suppose A is not invertible, and $\operatorname{det}\left(A+2 I_{5}\right)=0, \operatorname{det}\left(A+\sqrt{3} I_{5}\right)=0, \operatorname{det}\left(A-\sqrt{3} I_{5}\right)=0$ and $\operatorname{det}\left(A-2 I_{5}\right)=0$.
(a) Explain why A is diagonalizable.
(b) Write down the characteristic polynomial $p_{A}(x)$.

Arrange the terms $p_{A}(x)$ in ascending powers of x.
(c) i. By using the diagonalizability of A, or otherwise, show that $A^{5}=\alpha A^{3}+\beta A$.

Here α, β are some appropriate numbers. You have to give the value of α, β explicitly.
ii. Express A^{10} as a sum of scalar multiples of $I_{5}, A, A^{2}, A^{3}, A^{4}$.
14. (a) Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be the infinite sequence of real numbers defined recursively by

$$
\left\{\begin{array}{ll}
x_{0} & =0 \\
x_{1} & =1 \\
x_{n+2} & =2 x_{n+1}+8 x_{n}
\end{array} \quad \text { for any natural number } n\right.
$$

i. Write down the (2×2)-square matrix $A=\left[\begin{array}{cc}\alpha & \beta \\ 1 & 0\end{array}\right]$ for which the equality $\left[\begin{array}{l}x_{n+2} \\ x_{n+1}\end{array}\right]=A\left[\begin{array}{c}x_{n+1} \\ x_{n}\end{array}\right]$ holds for every natural number n.
Here α, β are some appropriate real numbers, independent of n, which you have to determine explicitly.
ii. Find the characteristic polynomial $p_{A}(x)$, and find the eigenvalues of A.
iii. Hence find a diagaonalization for A, and show that $A^{n}=\frac{\lambda^{n}}{6}\left[\begin{array}{ll}4 & 8 \\ 1 & 2\end{array}\right]+\frac{\mu^{n}}{6}\left[\begin{array}{cc}2 & -8 \\ -1 & 4\end{array}\right]$ for every natural number n.
Here λ, μ are some appropriate real numbers, independent of n, which you have to determine explicitly.
iv. Hence find an explicit formula for x_{n} (in terms of n alone).
(b) Imitate the process described above to find an explicit formula for the individual terms of each recursively defined infinite sequence described below:
i. $\begin{cases}x_{0} & =0 \\ x_{1} & =6 \\ x_{n+2} & =x_{n+1}+2 x_{n} \quad \text { for any natural number } n\end{cases}$
ii. $\left\{\begin{array}{ll}x_{0} & =-1 \\ x_{1} & =1 \\ x_{n+2} & =5 x_{n+1}-6 x_{n}\end{array} \quad\right.$ for any natural number n
iii. $\begin{cases}x_{0}=3 \\ x_{1} & =6 \\ x_{2} & =14 \\ x_{n+3} & =6 x_{n+2}-11 x_{n+1}+6 x_{n} \quad \text { for any natural number } n\end{cases}$
15. Let A be an $(n \times n)$-square matrix, and λ be a number. Suppose \mathbf{x} is an eigenvector of A with eigenvalue λ.
(a) Let $c_{0}, c_{1}, c_{2}, c_{3}$ be numbers, and $B=c_{0} I_{n}+c_{1} A+c_{2} A^{2}+c_{3} A^{3}$.

Is \mathbf{x} an eigenvector of B ? Justify your answer, with direct reference to the definition of eigenvalues and eigenvectors.
(b) Now suppose A is invertible.
i. Show that $\lambda \neq 0$, and \mathbf{x} is an eigenvector of A^{-1} with eigenvalue λ^{-1}.
ii. Define the $(2 n \times 2 n)$-square matrices C and the column vector \mathbf{y} with $2 n$ entries by

$$
C=\left[\begin{array}{c|c}
A & A^{-1} \\
\hline A^{-1} & A
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
\mathbf{x} \\
\hline \mathbf{x}
\end{array}\right]
$$

Is \mathbf{y} an eigenvector of C ? Justify your answer with direct reference to the definition of eigenvalues and eigenvectors.
16. Prove the statements below with reference to the definitions for the notions of eigenvalues, eigenvectors, diagonalizability, integral powers of (square) matrices and invertibility, where relevant:-
(a) i. Let A be a square matrix. Suppose λ is an eigenvalue of A, and \mathbf{v} is an eigenvector of A with eigenvalue λ. Then for each positive integer p, λ^{p} is an eigenvalue of A, and \mathbf{v} is an eigenvector of A^{p} with eigenvalue λ^{p}.
ii. Let A be a square matrix. Suppose A is diagonalizable, with respect to some invertible matrix U of the same size. Then, for any positive integer p, A^{p} is diagonalizable with respect to the same U.
(b) i. Let A be a square matrix. Suppose A is invertible. Further suppose λ is an eigenvalue of A, and \mathbf{v} is an eigenvector of A with eigenvalue λ. Then $\lambda \neq 0$. Moreover, for each positive integer q, λ^{-q} is an eigenvalue of A^{-q}, and \mathbf{v} is an eigenvector of A^{-q} with eigenvalue λ^{-q}.
ii. Let A be a square matrix. Suppose A is invertible. Also suppose A is diagonalizable, with respect to some invertible matrix U of the same size. Then for each positive integer q, A^{-q} is diagonalizable with respect to the same U.
17. For each statement below, determine whether it true or false. Justify your answer with an appropriate argument.
(a) Let A be an $(n \times n)$-square matrix, and λ be a number.

Suppose λ^{2} is an eigenvalue of A^{2}. Then at least one of $\lambda,-\lambda$ is an eigenvalue of A.
(b) Let A be an $(n \times n)$-square matrix, and λ be a number.

Suppose λ^{2} is an eigenvalue of A^{2}. Then both of $\lambda,-\lambda$ is an eigenvalue of A.
18. Let A be a square matrix, and α, β be numbers. Prove the statements below:-
(a) $\alpha \beta$ is an eigenvalue of $(\alpha+\beta) A-A^{2}$ if and only if at least one of α, β is an eigenvalue of A.
(b) Suppose A is invertible.

Then $\alpha+\beta$ is an eigenvalue of $A+\alpha \beta A^{-1}$ if and only if at least one of α, β is an eigenvalue of A.
19. Prove the statements below with reference to the definitions for the notions of eigenvalues, eigenvectors, diagonalizability, where relevant:-
(a) Let A, B be $(n \times n)$-square matrices, λ, μ be numbers, and \mathbf{v} be a non-zero column vector with n entries.

Suppose \mathbf{v} is an eigenvector of A, B with respective eigenvalues λ, μ.
Then for any numbers $\alpha, \beta, \mathbf{v}$ is an eigenvector of $\alpha A+\beta B$ with eigenvalue $\alpha \lambda+\beta \mu$.
(b) Let A, B, U be $(n \times n)$-square matrices. Suppose U is invertible, and suppose A, B are diagonalizable with respect to U.
Then for any numbers $\alpha, \beta, \alpha A+\beta B$ is diagonalizable with respect to U.
20. Prove the statements below with reference to the definitions for the notions of eigenvalues, eigenvectors, diagonalizability, where relevant:-
(a) Let A, B be $(n \times n)$-square matrices, λ, μ be numbers, and \mathbf{v} be a non-zero column vector with n entries.

Suppose \mathbf{v} is an eigenvector of A, B with respective eigenvalues λ, μ.
Then \mathbf{v} is an eigenvector of each of $A B, B A$, with eigenvalue $\lambda \mu$ for each.
(b) Let A, B, U be $(n \times n)$-square matrices. Suppose U is invertible, and suppose A, B are diagonalizable with respect to U.
Then $A B$ is diagonalizable with respect to U, and A, B commute with each other.
21. Prove the statements below:-
(a) Let A, B be $(n \times n)$-square matrices. Suppose A is diagonalizable.

Further suppose every eigenvector of A is an eigenvector of B.
Then A, B commute with each other.
(b) Let A, B be $(n \times n)$-square matrices. Suppose A, B commute with each other.

Further suppose A has n pairwise distinct eigenvalues, and B is invertible. Then every eigenvector of A is an eigenvector of B, and B is diagonalizable.

22 . Let A, B be $(n \times n)$-square matrices.
Prove the statements below with reference to the definition for the notions of eigenvalues and eigenvectors:
(a) Suppose 0 is an eigenvalue of $A B$. Then 0 is an eigenvalue of $B A$.
(b) Suppose λ is a non-zero number. Suppose λ is an eigenvalue of $A B$. Then λ is an eigenvalue of $B A$.
23. (a) Prove the statement (\sharp) :-
(\sharp) Let \mathbf{w} be a column vector with 6 real entries. Suppose $\mathbf{w}^{t} \mathbf{w}=0$. Then $\mathbf{w}=\mathbf{0}_{6}$.
(b) Prove the statement ($(\mathrm{b}):$:—
(\downarrow) Suppose S is a (6×6)-symmetric matrix with real entries. Then, for any column vectors \mathbf{u}, \mathbf{v} with 6 real entries, if $\mathbf{u} \in \mathcal{N}(S)$ and $\mathbf{v} \in \mathcal{C}(S)$ then $\mathbf{u}^{t} \mathbf{v}=0$.
(c) Let T be a (6×6)-symmetric matrix with real entries, λ be a real number, and \mathbf{z} be a non-zero column vector with 6 real entries. Suppose \mathbf{z} is an eigenvector of T with eigenvalue λ. Is the system $\mathcal{L S}\left(T-\lambda I_{6}, \mathbf{z}\right)$ consistent or not? Justify your answer.
(d) Let H be a (6×6)-skew-symmetric matrix with real entries, μ be a non-zero real number, and \mathbf{y} be a non-zero column vector with 6 real entries. Suppose \mathbf{y} is an eigenvector of H with eigenvalue μ.
Is the system $\mathcal{L S}\left(H-\mu I_{6}, \mathbf{y}\right)$ consistent or not? Justify your answer.

