6.3.1 Exercise: Eigenvalues, eigenvectors, and diagonalization.

1. Consider each pairs of square matrices and column vectors below, respectively labelled A, \mathbf{v} here. Determine whether \mathbf{v} is an eigenvector of A. If it is, also determine the corresponding eigenvalue.

(a)
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$.
(b) $A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 1 & 0 & -1 & 5 \\ 0 & 1 & 1 & 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.
(c) $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.
(d) $A = \begin{bmatrix} -13 & -25 & 3 & -17 & -4 \\ 6 & 11 & 0 & 8 & 2 \\ 7 & 13 & -3 & 8 & 1 \\ 5 & 10 & -3 & 6 & 1 \\ -11 & -20 & 3 & -13 & -2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 1 \end{bmatrix}$

2. For the square matrix with real entries in each part below, denoted by A:

- determine its characteristic polynomial $p_A(x)$,
- determine its eigenvalues $\lambda_1, \lambda_2, \cdots$, and
- determine all eigenvectors corresponding to the eigenvalue λ_j for each j, and
- provide a diagonalization for A with respect to some appropriate invertible square matrix, if A is diagonalizable.

$$\begin{array}{l} \text{(a)} \ A = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} \\ \text{(b)} \ A = \begin{bmatrix} 5 & 8 \\ 1 & 7 \end{bmatrix} \\ \text{(c)} \ A = \begin{bmatrix} -8 & 7 \\ -4 & 8 \end{bmatrix} \\ \text{(d)} \ A = \begin{bmatrix} 3 & 2 \\ -2 & -3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} 3 & 5 \\ -2 & 0 & 0 & 3 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & 5 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & 2 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & 2 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & 2 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & 2 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & 2 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & 2 \\ -2 & -2 & 1 \end{bmatrix} \\ \text{(g)} \ A = \begin{bmatrix} -3 & -2 & -2 & -2 & 1 \\ -2 & -2 & -2 & 1 \end{bmatrix} \\$$

- 3. Let $A = \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix}$.
 - (a) Find the characteristic polynomial $p_A(x)$ of A.
 - (b) Write down the eigenvalues of A.
 - (c) For each eigenvalue of A, determine all its corresponding eigenvectors.
 - (d) Is A diagonalizable? Justify your answer. If A is diagonalizable, also give a diagonalization of A with respect to some appropriate invertible matrix.
- 4. With direct reference to the definition for the notion of eigenvalues, eigenvectors, and linear dependence/independence, prove the statements below:
 - (a) Let A be an $(n \times n)$ -square matrix, λ_1, λ_2 be pairwise distinct numbers, and $\mathbf{u}_1, \mathbf{u}_2$ be non-zero column vectors with n entries.

Suppose $\mathbf{u}_1, \mathbf{u}_2$ are eigenvectors of A with eigenvalues λ_1, λ_2 respectively. Then $\mathbf{u}_1, \mathbf{u}_2$ are linearly independent.

(b) Let A be an (n × n)-square matrix, λ₁, λ₂, λ₃ be pairwise distinct numbers, and u₁, u₂, u₃ be non-zero column vectors with n entries. Suppose u₁, u₂, u₃ are eigenvectors of A with eigenvalues λ₁, λ₂, λ₃ respectively. Then u₁, u₂, u₃ are linearly independent.

Remark. You may find that it is better to make use of the result in the previous part in an appropriate way.

(c) Let A be an $(n \times n)$ -square matrix, $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ be pairwise distinct numbers, and $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ be non-zero column vectors with n entries.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are eigenvectors of A with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ respectively. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are linearly independent.

Remark. You may find that it is better to make use of the result in the previous part in an appropriate way.

5. Let $A = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}$.

- (a) Find the characteristic polynomial $p_A(x)$ of A.
- (b) Write down the eigenvalues of A.
- (c) For each eigenvalue of A, determine all its corresponding eigenvectors.
- (d) Is A diagonalizable? Justify your answer.

6. Let
$$A = \begin{bmatrix} 0 & 0 & -20 \\ 1 & 0 & 16 \\ 0 & 1 & -1 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial $p_A(x)$ of A.
- (b) Write down the eigenvalues of A.
- (c) For each eigenvalue of A, determine all its corresponding eigenvectors.
- (d) Is A diagonalizable? Justify your answer.

7. Let
$$A = \begin{bmatrix} 0 & -2 & -2 & -4 & -6 \\ 16 & 22 & 21 & 39 & 58 \\ -9 & -12 & -11 & -22 & -33 \\ 3 & 4 & 4 & 11 & 13 \\ -4 & -5 & -5 & -11 & -14 \end{bmatrix}$$
.

Take for granted that the characteristic polynomial $p_A(x)$ of the matrix A is given by $p_A(x) = -(x-1)^2(x-2)^3$. Further take for granted that $A - I_5$ is row-equivalent to

and $A - 2I_5$ is row-equivalent to

- (a) Name all possible eigenvalues of A.
- (b) Determine all eigenvectors of A.
- (c) Is A diagonalizable? Justify your answer.

8. Let
$$\alpha$$
 be a number, and $A_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & 3 & 0 \\ 1 & \alpha - 1 & 3 \end{bmatrix}$.

- (a) Write down the characteristic polynomial $p_{A_{\alpha}}(x)$ of the matrix A_{α} .
- (b) What are the eigenvalues of A_{α} ?
- (c) For each value of α , determine all possible eigenvectors of A_{α} .
- (d) For which values of α is A diagonalizable? Justify your answer.

.

9. Let
$$A = \begin{bmatrix} 41 & 2 & -5 & -11 & -33 \\ 33 & 3 & -4 & -10 & -27 \\ -2 & 0 & 2 & 1 & 1 \\ 41 & 2 & -5 & -10 & -34 \\ 39 & 2 & -5 & -11 & -31 \end{bmatrix}$$

Take for granted that the characteristic polynomial $p_A(x)$ of the matrix A is given by $p_A(x) = -(x-1)^2(x-2)^2(x+1)$. Further take for granted that:—

(a) Name all possible eigenvalues of A.

- (b) Determine all eigenvectors of A.
- (c) Show that A is diagonalizable. Also give a diagonalization of A.
- (d) i. Name all possible eigenvalues of A^2 .
 - ii. Write down the characteristic polynomial $p_{A^2}(x)$ of the matrix A^2 .
 - iii. Determine all eigenvectors of A^2 .
 - iv. Write down a diagonalization of A^2 .
- 10. (a) Prove the statement (\sharp) :—

(#) Let a_1, a_2, c be real numbers. Suppose $A = \begin{bmatrix} a_1 & c \\ c & a_2 \end{bmatrix}$, and $\alpha = \frac{a_1 + a_2}{2}$, and $\beta = \frac{a_1 - a_2}{2}$. Then $p_A(x) = (x - \alpha)^2 - (\beta^2 + c^2)$ as polynomials.

- (b) Hence, or otherwise, prove that the statement (\natural) :
 - (\natural) Let A be a (2 × 2)-square matrix with real entries. Suppose A is symmetric. Then the eigenvalues of A are real. Moreover A is diagonalizable with respect to some invertible (2 × 2)-square matrix with real entries.

11. Let a, b, c, d be numbers, and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Write $p_A(x) = c_0 + c_1 x + c_2 x^2$. Here c_0, c_1, c_2 stand for some appropriate numbers.

- (a) Write down the values c_0, c_1, c_2 . Leave your answers in terms of a, b, c, d.
- (b) By direct calculation, verify that $c_0I_2 + c_1A + c_2A^2 = \mathcal{O}_{2\times 2}$.
- (c) Suppose A has one and only one eigenvalue, say, λ .
 - i. Express $p_A(x)$ in terms of λ . Give the values of c_0, c_1, c_2 in terms of λ .
 - ii. Express A^2, A^3, A^4, A^5 in terms of λ, I_2, A .
 - iii. Conjecture a 'general formula' for A^n in terms of λ, I_2, A that holds whenever n is an integer greater than 1. Prove your conjecture with mathematical induction.

12. Let
$$A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ 2 & 0 & 5 & -4 \\ -1 & 1 & -2 & 3 \\ -1 & 4 & -1 & 6 \end{bmatrix}$$

Take for granted its characteristic polynomial $p_A(x)$ is given by $p_A(x) = x^4 - 5x^3 + 9x^2 - 7x + 2$, and 1, 2 are some of the roots of $p_A(x)$.

- (a) Factorize $p_A(x)$ completely.
- (b) What are the eigenvalues of A? Justify your answer.
- (c) Determine the eigenspaces of A explicitly, by naming a basis for each of them.
- (d) Is A diagonalizable? Justify your answer.
- 13. Let A be a (5×5) -square matrix.

Suppose A is not invertible, and $\det(A + 2I_5) = 0$, $\det(A + \sqrt{3}I_5) = 0$, $\det(A - \sqrt{3}I_5) = 0$ and $\det(A - 2I_5) = 0$.

- (a) Explain why A is diagonalizable.
- (b) Write down the characteristic polynomial $p_A(x)$. Arrange the terms $p_A(x)$ in ascending powers of x.
- (c) i. By using the diagonalizability of A, or otherwise, show that $A^5 = \alpha A^3 + \beta A$. Here α, β are some appropriate numbers. You have to give the value of α, β explicitly.
 - ii. Express A^{10} as a sum of scalar multiples of I_5, A, A^2, A^3, A^4 .
- 14. (a) Let $\{x_n\}_{n=0}^{\infty}$ be the infinite sequence of real numbers defined recursively by

$$\begin{cases} x_0 = 0\\ x_1 = 1\\ x_{n+2} = 2x_{n+1} + 8x_n & \text{for any natural number } n \end{cases}$$

i. Write down the (2×2) -square matrix $A = \begin{bmatrix} \alpha & \beta \\ 1 & 0 \end{bmatrix}$ for which the equality $\begin{bmatrix} x_{n+2} \\ x_{n+1} \end{bmatrix} = A \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix}$ holds for every natural number n.

Here α, β are some appropriate real numbers, independent of n, which you have to determine explicitly.

- ii. Find the characteristic polynomial $p_A(x)$, and find the eigenvalues of A.
- iii. Hence find a diagonalization for A, and show that $A^n = \frac{\lambda^n}{6} \begin{bmatrix} 4 & 8\\ 1 & 2 \end{bmatrix} + \frac{\mu^n}{6} \begin{bmatrix} 2 & -8\\ -1 & 4 \end{bmatrix}$ for every natural number n.

Here λ, μ are some appropriate real numbers, independent of n, which you have to determine explicitly.

- iv. Hence find an explicit formula for x_n (in terms of n alone).
- (b) Imitate the process described above to find an explicit formula for the individual terms of each recursively defined infinite sequence described below:

i. $\begin{cases} x_0 = 0 \\ x_1 = 6 \\ x_{n+2} = x_{n+1} + 2x_n \text{ for any natural number } n \end{cases}$ ii. $\begin{cases} x_0 = -1 \\ x_1 = 1 \\ x_{n+2} = 5x_{n+1} - 6x_n \text{ for any natural number } n \end{cases}$ iii. $\begin{cases} x_0 = 3 \\ x_1 = 6 \\ x_2 = 14 \\ x_{n+3} = 6x_{n+2} - 11x_{n+1} + 6x_n \text{ for any natural number } n \end{cases}$

- 15. Let A be an $(n \times n)$ -square matrix, and λ be a number. Suppose **x** is an eigenvector of A with eigenvalue λ .
 - (a) Let c_0, c_1, c_2, c_3 be numbers, and $B = c_0 I_n + c_1 A + c_2 A^2 + c_3 A^3$.

Is \mathbf{x} an eigenvector of B? Justify your answer, with direct reference to the definition of eigenvalues and eigenvectors.

- (b) Now suppose A is invertible.
 - i. Show that $\lambda \neq 0$, and **x** is an eigenvector of A^{-1} with eigenvalue λ^{-1} .

ii. Define the $(2n \times 2n)$ -square matrices C and the column vector **y** with 2n entries by

$$C = \begin{bmatrix} A & A^{-1} \\ \hline A^{-1} & A \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} \mathbf{x} \\ \hline \mathbf{x} \end{bmatrix}$$

Is \mathbf{y} an eigenvector of C? Justify your answer with direct reference to the definition of eigenvalues and eigenvectors.

- 16. Prove the statements below with reference to the definitions for the notions of *eigenvalues*, *eigenvectors*, *diagonalizability*, *integral powers of (square) matrices* and *invertibility*, where relevant:—
 - (a) i. Let A be a square matrix. Suppose λ is an eigenvalue of A, and **v** is an eigenvector of A with eigenvalue λ . Then for each positive integer p, λ^p is an eigenvalue of A, and **v** is an eigenvector of A^p with eigenvalue λ^p .
 - ii. Let A be a square matrix. Suppose A is diagonalizable, with respect to some invertible matrix U of the same size. Then, for any positive integer p, A^p is diagonalizable with respect to the same U.
 - (b) i. Let A be a square matrix. Suppose A is invertible. Further suppose λ is an eigenvalue of A, and v is an eigenvector of A with eigenvalue λ. Then λ ≠ 0. Moreover, for each positive integer q, λ^{-q} is an eigenvalue of A^{-q}, and v is an eigenvector of A^{-q} with eigenvalue λ^{-q}.
 - ii. Let A be a square matrix. Suppose A is invertible. Also suppose A is diagonalizable, with respect to some invertible matrix U of the same size. Then for each positive integer q, A^{-q} is diagonalizable with respect to the same U.
- 17. For each statement below, determine whether it true or false. Justify your answer with an appropriate argument.
 - (a) Let A be an (n × n)-square matrix, and λ be a number.
 Suppose λ² is an eigenvalue of A². Then at least one of λ, −λ is an eigenvalue of A.
 - (b) Let A be an (n × n)-square matrix, and λ be a number.
 Suppose λ² is an eigenvalue of A². Then both of λ, -λ is an eigenvalue of A.
- 18. Let A be a square matrix, and α, β be numbers. Prove the statements below:—
 - (a) $\alpha\beta$ is an eigenvalue of $(\alpha + \beta)A A^2$ if and only if at least one of α, β is an eigenvalue of A.
 - (b) Suppose A is invertible.

Then $\alpha + \beta$ is an eigenvalue of $A + \alpha \beta A^{-1}$ if and only if at least one of α, β is an eigenvalue of A.

- 19. Prove the statements below with reference to the definitions for the notions of *eigenvalues*, *eigenvectors*, *diagonalizability*, where relevant:—
 - (a) Let A, B be (n × n)-square matrices, λ, μ be numbers, and v be a non-zero column vector with n entries. Suppose v is an eigenvector of A, B with respective eigenvalues λ, μ. Then for any numbers α, β, v is an eigenvector of αA + βB with eigenvalue αλ + βμ.
 - (b) Let A, B, U be (n × n)-square matrices. Suppose U is invertible, and suppose A, B are diagonalizable with respect to U.
 Then for any numbers α, β, αA + βB is diagonalizable with respect to U.
- 20. Prove the statements below with reference to the definitions for the notions of *eigenvalues*, *eigenvectors*, *diagonalizability*, where relevant:—
 - (a) Let A, B be (n × n)-square matrices, λ, μ be numbers, and v be a non-zero column vector with n entries. Suppose v is an eigenvector of A, B with respective eigenvalues λ, μ. Then v is an eigenvector of each of AB, BA, with eigenvalue λμ for each.
 - (b) Let A, B, U be (n × n)-square matrices. Suppose U is invertible, and suppose A, B are diagonalizable with respect to U.
 Then AB is diagonalizable with respect to U, and A, B commute with each other.
- 21. Prove the statements below:—

- (a) Let A, B be (n × n)-square matrices. Suppose A is diagonalizable.
 Further suppose every eigenvector of A is an eigenvector of B.
 Then A, B commute with each other.
- (b) Let A, B be (n × n)-square matrices. Suppose A, B commute with each other.
 Further suppose A has n pairwise distinct eigenvalues, and B is invertible. Then every eigenvector of A is an eigenvector of B, and B is diagonalizable.
- 22. Let A, B be $(n \times n)$ -square matrices.

Prove the statements below with reference to the definition for the notions of eigenvalues and eigenvectors:

- (a) Suppose 0 is an eigenvalue of AB. Then 0 is an eigenvalue of BA.
- (b) Suppose λ is a non-zero number. Suppose λ is an eigenvalue of AB. Then λ is an eigenvalue of BA.
- 23. (a) Prove the statement (\sharp) :—
 - (\sharp) Let **w** be a column vector with 6 real entries. Suppose $\mathbf{w}^t \mathbf{w} = 0$. Then $\mathbf{w} = \mathbf{0}_6$.
 - (b) Prove the statement (\natural):——
 - ($\boldsymbol{\natural}$) Suppose S is a (6×6)-symmetric matrix with real entries. Then, for any column vectors \mathbf{u}, \mathbf{v} with 6 real entries, if $\mathbf{u} \in \mathcal{N}(S)$ and $\mathbf{v} \in \mathcal{C}(S)$ then $\mathbf{u}^t \mathbf{v} = 0$.
 - (c) Let T be a (6×6)-symmetric matrix with real entries, λ be a real number, and z be a non-zero column vector with 6 real entries. Suppose z is an eigenvector of T with eigenvalue λ.
 Is the system LS(T λI₆, z) consistent or not? Justify your answer.
 - (d) Let H be a (6 × 6)-skew-symmetric matrix with real entries, μ be a non-zero real number, and y be a non-zero column vector with 6 real entries. Suppose y is an eigenvector of H with eigenvalue μ. Is the system LS(H μI₆, y) consistent or not? Justify your answer.