
6.3 Eigenvalues and characteristic polynomials.

0. Assumed background.

• What has been covered in Topics 1-5.
• 6.1 Eigenvalues and eigenvectors for square matrices.
• 6.2 Diagonalization and diagonalizability for square matrices.

Abstract. We introduce:—

• the notion of characteristic polynomials of square matrices.

1. Recall the result below, labelled Theorem (♯), about equivalent formulation for the notion of eigenvalues for a square
matrix in terms of invertibility and determinants:—
Theorem (♯). (Equivalent formulations for the notion of eigenvalues for square matrices.)
Suppose A is an (n× n)-square matrix, and λ is a number. Then the statements below are logically equivalent:—

(1) λ is an eigenvalue of A.
(2) The homogeneous system LS(A− λIn, 0n) has a non-trivial solution.
(3) A− λIn is not invertible.
(4) The rank of A− λIn is at most n− 1.
(5) det(A− λIn) = 0.

Now suppose one of (1), (2), (3), (4), (5) holds. (So all of them hold.)
Further suppose v is a column vector with n entries.
Then v is an eigenvector of A with eigenvalue λ if and only if v is a non-trivial solution of LS(A− λIn, 0n).

2. The logical equivalence between the statements (1), (5) motivates the definition below:
Definition. (Characteristic polynomial of a matrix.)
Let A be an (n × n)-square matrix. The (algebraic) expression det(A − xIn) (with indeterminate x) is called the
characteristic polynomial of the square matrix A. It is denoted by pA(x).

3. Using mathematical induction, we can prove the result below (which confirms that it makes sense to use the word
‘polynomial’ in the phrase ‘characteristic polynomial of a square matrix’).
Theorem (1).
Suppose A is an (n× n)-square matrix.
Then pA(x) is a degree-n polynomial with indeterminate x, with leading coefficient (−1)n, and with constant
coefficient det(A).

Remark. The multiple of (−1)n−1 with the coefficient of the degree-(n − 1) term in the polynomial pA(x) is
called the trace of A, and is denoted by tr(A).

4. Theorem (♯) now gives an equivalent formulation for the notion of eigenvalues in terms of polynomials and roots.
Theorem (2).
Suppose A is an (n× n)-square matrix, and λ is a number. Then the statements below are logically equivalent:

(1) λ is an eigenvalue of A.
(2) λ is a root of pA(x).

5. Example (1). (Characteristic polynomials for square matrices.)

(a) Suppose A =
[

13 30
−6 −14

]
. Then

pA(x) = det(A− xI2) = det(
[
13− x 30
−6 −14− x

]
)

= (13− x)(−14− x)− (−6) · 30 = x2 + x− 2 = (x− 1)(x+ 2).
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(b) Suppose A =

[
1 1 1
0 2 2
0 0 3

]
. Then

pA(x) = det(A− xI3) = det(

[
1− x 1 1
0 2− x 2
0 0 3− x

]
)

= (1− x)(2− x)(3− x) = −(x− 1)(x− 2)(x− 3) = −x3 + 6x2 − 11x+ 6.

(c) Suppose A =

 0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

. Then

pA(x) = det(A− xI4) = · · · = x4 − 10x2 + 9 = (x+ 3)(x+ 1)(x− 1)(x− 3).

(d) Suppose A =

[
2 1 1
1 2 1
1 1 2

]
. Then

pA(x) = det(A− xI3) = det(

[
2− x 1 1
1 2− x 1
1 1 2− x

]
) = det(

[
2− x 1 1
1 2− x 1
0 −1 + x 1− x

]
)

= det(

[
2− x 2 1
1 3− x 1
0 0 1− x

]
)

= (1− x)det(
[
2− x 2
1 3− x

]
) = (1− x)det(

[
2− x 2
−1 + x 1− x

]
) = (1− x)det(

[
4− x 2
0 1− x

]
)

= (1− x)2(4− x) = −(x− 1)2(x− 4) = −x3 + 6x2 − 9x+ 4.

(e) Suppose A =
[
1 4
0 1

]
.Then

pA(x) = det(A− xI2) = det(
[
1− x 4
0 1− x

]
) = (1− x)2 = (x− 1)2 = x2 − 2x+ 1

(f) Suppose A =

[
1 4 0
0 1 2
0 0 1

]
. Then

pA(x) = det(A− xI3) = det(

[
1− x 4 0
0 1− x 2
0 0 1− x

]
) = (1− x)3 = −(x− 1)3 = −x3 + 3x2 − 3x+ 1

(g) Suppose A =
[
1 −1
1 1

]
. Then

pA(x) = det(A− xI2) = det(
[
1− x −1
1 1− x

]
)

= (1− x)2 + 1 = x2 − 2x+ 2 = [x− (1 + i)][x− (1− i)]

(h) Suppose A =

 1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

. Then

pA(x) = det(A− xI4)

= · · ·
= (1− x)4 + 1 = x4 − 4x3 + 6x2 − 4x+ 2

= [(x− 1)2 − i][(x− 1)2 + i]

=

[
x−

(
1 +

1√
2
+

i√
2

)][
x−

(
1− 1√

2
− i√

2

)][
x−

(
1− 1√

2
+

i√
2

)][
x−

(
1 +

1√
2
− i√

2

)]
.

6. We now state a famous result first discovered and established by Gauss, whose proof is beyond the scope of this
course:—
Fundamental Theorem of Algebra.
Suppose f(x) is a non-constant polynomial whose coefficients are complex numbers. Then f(x) has a root amongst
complex numbers.
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7. Using the Fundamental Theorem of Algebra, and using Factor Theorem, we can deduce the result below from
Theorem (2). Example (1) has already provided some illustrations for its content.
Theorem (3).
Suppose A is an (n × n)-square matrix. Then there are some pairwise distinct numbers λ1, λ2, · · · , λs, and some
positive integers m1,m2, · · · ,ms, such that:—

(1) pA(x) = (−1)n(x− λ1)
m1(x− λ2)

m2 · · · (x− λs)
ms as polynomials,

(2) λ1, λ2, · · · , λs are all the (pairwise distinct) eigenvalues of A, and
(3) m1 +m2 + · · ·+ms = n.

Remarks on terminologies.

(a) For each j = 1, 2, · · · , s, the positive integer mj is called the algebraic multiplicity of the eigenvalue λj

of A.
(b) The set {λ1, λ2, · · · , λs} is called the spectrum of A.

Further remark. Theorem (3) is stated only for reference; we are not going to rely on it in the rest of material.

8. Examples on non-diagonalizable upper-triangular matrices suggest that the main obstacle against diagonalizability
is a lack of ‘sufficiently many’ distinct eigenvalues. So it is natural for us to ask whether a square matrix which has
‘sufficiently many’ distinct eigenvalues will be guaranteed to be diagonalizable.
This turns out to be the case. But at the same time, we will know that the same square matrix cannot have ‘too
many’ eigenvalues.
Theorem (4).
Suppose A is an (n× n)-square matrix. Then the statements below hold:—

(1) A possesses at most n (pairwise distinct) eigenvalues.
(2) If A possesses exactly n (pairwise distinct) eigenvalues, then A is diagonalizable.

Remarks.

(a) The statement (1) is already (implicitly) implied by Theorem (3). This is a consequence of three ‘facts’:—
• The degree of the characteristic polynomial of a square matrix is the same as the size of that matrix.
• There are at most as many roots for a polynomial as its degree.
• A number is an eigenvalue of a square matrix exactly when it is a root of the characteristic polynomial of

that square matrix.
Nonetheless, we will give an argument for the statement (1) which does not rely on Theorem (3).

(b) The statement (2) only provide a sufficient condition for diagonalizability. Its converse is false. It can happen
that a square matrix has just one eigenvalue and yet it is diagonalizable: two trivial examples are the zero
square-matrix and the identity matrix.

9. We will give an argument for Theorem (4) with the help of Theorem (6). The latter relies on the ‘technical result’
which is Lemma (5) below. The proofs of Lemma (5) and Theorem (6) will be given later.
Lemma (5).
Let A be an (n× n)-square matrix, and u1,u2, · · · ,up,v are non-zero column vectors with n entries.
Suppose (1), (2), (3), (4) hold:—

(1) u1,u2, · · · ,up are linearly independent.
(2) v is a linear combination of u1,u2, · · · ,up.
(3) v is not a linear combination of (at most) p− 1 column vectors amongst u1,u2, · · · ,up.
(4) u1,u2, · · · ,up,v are eigenvectors of A, with corresponding eigenvalues λ1, λ2, · · · , λp, µ respectively.

Then λ1 = λ2 = · · · = λp = µ.

10. Theorem (6). (Linear independence of eigenvectors of distinct eigenvalues.)
Let A be a square matrix.
Suppose κ1, κ2, · · · , κq are pairwise distinct eigenvalues of A.
Further suppose t1, t2, · · · , tq are eigenvalues of A, with corresponding eigenvalues κ1, κ2, · · · , κq respectively.
Then t1, t2, · · · , tq are linearly independent.
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11. For the moment, we take for granted the validity of Lemma (5) and Theorem (6), and apply the latter to give an
argument for Theorem (4).
Proof of Theorem (4).
Suppose A is an (n× n)-square matrix.

(1) We verify that A possesses at most n (pairwise distinct) eigenvalues, with the proof-by-contradiction method.
Suppose it were true that A possessed n + 1 (pairwise distinct) eigenvalues, say, λ1, λ2, · · · , λn, λn+1, (and
perhaps other eigenvalues as well).
For each j = 1, 2, · · · , n, n+ 1, there is some eigenvector uj of A corresponding to the eigenvalue λj .
Now by Theorem (5), u1,u2, · · · ,un,un+1 would be linearly independent column vectors, each with n entries.
Contradiction arises.

(2) Suppose A possesses exactly n (pairwise distinct) eigenvalues, say, λ1, λ2, · · · , λn.
For each j = 1, 2, · · · , n, there is some eigenvector uj of A corresponding to the eigenvalue λj .
Now by Theorem (5), u1,u2, · · · ,un are linearly independent column vectors, each with n entries.
Then A is diagonalizable, with a diagonalization given by U−1AU = diag(λ1, λ2, · · · , λn), in which U is the
invertible matrix given by U = [ u1 u2 · · · un ].

12. We can in fact give a necessary and sufficient condition for diagonalizability with focus put on eigenvalues.
For simplicity we restrict ourselves to real numbers, and to matrices and vectors with real entries:—
Theorem (7). (Necessary and sufficient conditions for diagonalizability, in terms dimensions and
bases for eigenspaces of various eigenvalues.)
Let A is an (n× n)-square matrix with real entries.
Suppose λ1, λ2, · · · , λs are all the eigenvalues of A, pairwise distinct. Further suppose all of λ1, λ2, · · · , λs are real
numbers.
Then the statements below are logically equivalent:—

(1) The equality dim(N (A− λ1In)) + dim(N (A− λ2In)) + · · ·+ dim(N (A− λsIn)) = n holds.
(2) A is diagonalizable.

Now suppose either of (1), (2) holds. (So both of them hold.)
For each k = 1, 2, · · · , p, write dim(N (A− λk)) = nk, and suppose that vk,1,vk,2, · · · ,vk,nk

constitute a basis for
N (A− λk).
Then a basis for Rn, in which all n column vectors are eigenvectors of A, is constituted by

v1,1,v1,2, · · · ,v1,n1
,

v2,1,v2,2, · · · ,v2,n2
,

. . .
vs,1,vs,2, · · · ,vs,ns .

Proof of Theorem (7). Omitted. (It is not difficult, but it is a tedious exercise in book-keeping.)

13. Example (2). (Illustration of the content of Theorem (7).)

Let A =

[
2 1 1
1 2 1
1 1 2

]
, and u1 =

[
1
1
1

]
, u2 =

[
1
−1
0

]
, u3 =

[
1
0
−1

]
.

u1,u2,u3 are eigenvectors of A with respective eigenvalues 4, 1, 1.
Write λ1 = 4, λ2 = 1.
The only eigenspaces of A are N (A− λ1I3) ,N (A− λ2I3).
Note that dim(N (A− λ1I3)). A basis for N (A− λ1I3) given by u1.
Note that dim(N (A− λ2I3)) = 2. A basis for N (A− λ2I3) is given by u2,u3.
The respective dimensions of N (A− λ1I3) ,N (A− λ2I3) add up to give 3.

Coincidentally, A is diagonalizable (as expected from theory), with a diagonalization of A given by U−1AU =

diag(4, 1, 1), in which U = [ u1 u2 u3 ].
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14. Before moving onto something else, we first complete the arguments leading towards Theorem (6) by providing a
proof for Lemma (4) and a proof for Theorem (5).
Proof of Lemma (4).
Let A be an (n× n)-square matrix, and u1,u2, · · · ,up,v are non-zero column vectors with n entries.
Suppose (1), (2), (3), (4) hold:—

(1) u1,u2, · · · ,up are linearly independent.
(2) v is a linear combination of u1,u2, · · · ,up.
(3) v is not a linear combination of (at most) p− 1 column vectors amongst u1,u2, · · · ,up.
(4) u1,u2, · · · ,up,v are eigenvectors of A, with corresponding eigenvalues λ1, λ2, · · · , λp, µ respectively.

By (2), there exist some numbers α1, α2, · · · , αp such that v = α1u1 + α2u2 + · · ·+ αpup.
By (4), we have

µv = Av

= A(α1u1 + α2u2 + · · ·+ αpup)

= α1Au1 + α2Au2 + · · ·+ αpAup

= α1λ1u1 + α2λ2u2 + · · ·+ αpλpup —— (♯)

Note that we also have

µv = µ(α1u1 + α2u2 + · · ·+ αpup)

= α1µu1 + α2µu2 + · · ·+ αpµup —— (♮)

Now by (♯), (♮), we obtain

α1(λ1 − µ)u1 + α2(λ2 − µ)u2 + · · ·+ αp(λp − µ)up = · · · = Av − µv = 0n

By (1), u1,u2, · · · ,up are linearly independent. Then by the definition of linear independence, we have

αj(λj − µ) = 0 for each j = 1, 2, · · · , p.

By (3), each of α1, α2, · · · , αp is non-zero. Then λ1 = λ2 = · · · = λp = µ.

15. Proof of Theorem (5). [We apply the proof-by-contradiction method.]
Let A be a square matrix. Suppose κ1, κ2, · · · , κq are pairwise distinct eigenvalues of A.
Further suppose t1, t2, · · · , tq are eigenvalues of A, with corresponding eigenvalues κ1, κ2, · · · , κq respectively.
Also suppose it were true that t1, t2, · · · , tq were linearly dependent.
Without loss of generality, we might assume that t1 was a linear combination of t2, t3, · · · , tq.

(a) Note that t2, t3, · · · , tq are linearly independent.
By assumption, each of t2, t3, · · · , tq, t1 is not the zero column vector.
Also by assumption, ‘κ2 = κ3 = · · · = κq = κ1’ fails to hold.
Then, by Lemma (4) (and by logic), t1 is a linear combination of at most q − 2 column vectors amongst
t2, t3, · · · , tq. Without loss of generality, we may assume they are t2, t3, · · · , tq−1.

(b) Repeating the above argument, we deduce that t1 is a linear combination of at most q − 3 column vectors
amongst t2, t3, · · · , tq−1. Without loss of generality, we may assume they are t2, t3, · · · , tq−2.

(c) Further repeating the above arguments (for finitely many times), we eventually deduce that t1 is a linear
combination of exactly one of t2, t3, · · · , tq, say, t2.

But by assumption, κ1 ̸= κ2. Contradiction arises.

16. We now proceed to deduce a relation between the positive integral powers of a diagonalizable matrix and the
coefficients of the characteristic polynomial of the same matrix.
Lemma (8).
Suppose A is a diagonalizable (n× n)-square matrix, with a diagonalization given by

U−1AU = diag(λ1, λ2, · · · , λn),
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in which U is some invertible (n× n)-square matrix.
Then pA(x) = (−1)n(x− λ1)(x− λ2) · ... · (x− λn) as polynomials.
Remark. We can further deduce from the basic properties of diagonalizable matrices:—

(a) For each positive integer q,

pAq (x) = (−1)n(x− λ1
q)(x− λ2

q) · ... · (x− λn
q) as polynomials.

(b) When A is invertible,

pA−1(x) = (−1)n(x− 1/λ1)(x− 1/λ2) · ... · (x− 1/λn) as polynomials.

17. Proof of Lemma (8).
Suppose A is a diagonalizable (n× n)-square matrix, with a diagonalization given by

U−1AU = diag(λ1, λ2, · · · , λn),

in which U is some invertible (n× n)-square matrix.
Write D = diag(λ1, λ2, · · · , λn).

Note that A− xIn = UDU−1 − U(xIn)U
−1 = U(D − xIn)U

−1.
Also note that D − xIn = diag(λ1 − x, λ2 − x, · · · , λn − x).
Then, as polynomials,

pA(x) = det(A− xIn) = det(U(D − xIn)U
−1)

= det(U) · det(D − xIn) · det(U−1)

= det(U) · det(D − xIn) · (det(U))−1

= (λ1 − x)(λ2 − x) · ... · (λn − x) = (−1)n(x− λ1)(x− λ2) · ... · (x− λn)

18. Lemma (8) will be used in deducing the result below.
Theorem (9). (A special case of the Cayley-Hamilton Theorem, for diagonalizable square matrices.)
Suppose A is a diagonalizable (n× n)-square matrix.
For each j, denote the coefficient of the j-th power term of pA(x) is cj .

(So pA(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n as polynomials.)

Then c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n = On×n.

Remark. The conclusion in Theorem (9) is often presented as pA(A) = On×n.
Further note that cn = (−1)n. As a consequence,

An = (−1)n+1c0In + (−1)n+1c1A+ (−1)n+1c2A
2 + · · ·+ (−1)n+1cn−1A

n−1.

So An is a ‘linear combination’ of I0, A,A2, · · · , An−1.

19. Theorem (10). (Corollary to Theorem (9).)
Suppose A is a diagonalizable (n× n)-square matrix. Then the statements below hold:—

(1) For each positive number q, there exist some numbers g0(q), g1(q), g2(q), · · · , gn−1(q) such that

Aq = g0(q)In + g1(q)A+ g2(q)A
2 + · · ·+ gn−1(q)A

n−1.

(2) Suppose A is invertible.
Then, for each positive integer q, there exist some numbers g0(−q), g1(−q), g2(−q), · · · , gn−1(−q) such that

A−q = g0(−q)In + g1(−q)A+ g2(−q)A2 + · · ·+ gn−1(−q)An−1.

Remark. In plain words, every positive integral power of A is a ‘linear combination’ of the ‘low positive powers’
of A given by I0, A,A2, · · · , An−1. The same can be said of every negative integral power of A under the assumption
of A being invertible in the first place.
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20. Proof of Theorem (9).

Suppose A is a diagaonalizable (n×n)-square matrix, with some diagonalization given by U−1AU = diag(λ1, λ2, · · · , λn),
for some invertible (n× n)-square matrix U .
For each k = 1, 2, · · · , n, the number λk is an eigenvalue of A. Then pA(λk) = 0.
Note that for each positive integer q,

U−1AqU = (U−1AU)q = (diag(λ1, λ2, · · · , λn))
q = diag(λ1

q, λ2
q, · · · , λn

q).

For each j, denote the coefficient of the j-th power term of pA(x) is cj .

(So pA(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n as polynomials.)

We have

U−1(c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n)U

= c0In + c1U
−1AU + c2U

−1A2U + · · ·+ cn−1U
−1An−1U + cnU

−1AnU

= c0In + c1 diag(λ1, λ2, · · · , λn) + c2 diag(λ1
2, λ2

2, · · · , λn
2)

+ · · ·+ cn−1 diag(λ1
n−1, λ2

n−1, · · · , λn
n−1) + cn diag(λ1

n, λ2
n, · · · , λn

n)

= diag(pA(λ1), pA(λ2), · · · , pA(λn)) = diag(0, 0, · · · , 0) = On×n

Then c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n = UOn×nU

−1 = On×n.

21. Theorem (9) is a special case of the result below, known as the Cayley-Hamilton Theorem. Its proof is omitted here.
(It can be given with the use of adjoints of square matrices. It is accessible at the level of this course, and can be
found in standard textbooks.) Theorem (10) can be generalized accordingly, with the dropping of the assumption
on diagonalizability.
Cayley-Hamilton Theorem.
Suppose A is an (n× n)-square matrix.
For each j, denote the coefficient of the j-th power term of pA(x) is cj .

(So pA(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 + cnx
n as polynomials.)

Then c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n = On×n.
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