
6.2 Diagonalization and diagonalizability for square matrices.

0. Assumed background.

• What has been covered in Topics 1-5.
• 6.1 Eigenvalues and eigenvectors for square matrices.

Abstract. We introduce:—

• the notions of diagonalization and diagonalizability for square matrices,
• basic ‘algebraic’ properties of diagonalizable square matrices,
• some necessary and sufficient conditions for diagonalization/diagonalizability.

1. Definition. (Diagonalization of square matrices with respect to invertible matrices.)
Let A,U be square matrices of the same size. Suppose U is an invertible.
Suppose U−1AU is a diagonal matrix. Then we say U−1AU is the diagonalization of A with respect to the
invertible matrix U .
Remark on terminology.

(a) If D stands for the diagonal matrix, then we refer to each of the equalities ‘U−1AU = D’, ‘A = UDU−1’,
‘AU = UD’, (which are themselves equvalent to each other) as a presentation of the diagonalization of
A with respect to the invertible matrix U . We also abuse terminologies by referring to these equalities
as ‘diagonalization of A with respect to U ’.

(b) When we do not want to emphasize the role of U , we may refer to U−1AU as a ‘diagonization of A’, omitting
the reference to U .

2. Definition. (Diagonalizability for square matrices.)
Suppose A is a square matrices.
Then we say A is diagonalizable if and only if there is some diagonalization of A with respect to some invertible
matrix of the same size as A.

3. It is noted that if a square matrix is diagonalizable then it has many distinct diagonalizations. This is a consequence
of the result below, and the fact that there are many permutation matrices.
Lemma (1).

Let A be an (n× n)-square matrix. Suppose A is diagonalizable, with the diagonalization U−1AU with respect to
some invertible (n×n)-square matrix U . Then, for any (n×n)-square matrix Q, if Q is a permutation matrix, then
(UQ)−1A(UQ) is also a diagonalization of A.

4. We shall see soon that the notions of diagonalizabibility and diagonalization are closedly tied with that of eigenvalues
and eigenvectors.
As preparation, we state and prove a simple result on matrix algebra.
Lemma (2).
Let A be an (n× n)-square matrix, µ1, µ2, · · · , µp be numbers, and v1,v2, · · · ,vp be non-zero column vectors with
n entries.
Write D = diag(µ1, µ2, · · · , µp).

Define the (n× p)-matrix V by V = [ v1 v2 · · · vp ].
Then the statements below are logically equivalent:—

(1) For each j = 1, 2, · · · , p, the column vector vj is an eigenvector of A with eigenvalue µj .

(2) The equality AV = V D holds.

5. Proof of Lemma (2).
Let A be an (n× n)-square matrix, µ1, µ2, · · · , µp be numbers, and v1,v2, · · · ,vp be non-zero column vectors with
n entries.
Write D = diag(µ1, µ2, · · · , µp).

Define the (n× p)-matrix V by V = [ v1 v2 · · · vp ].
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(a) Suppose that (1) holds: for each j = 1, 2, · · · , p, the column vector vj is an eigenvector of A with eigenvalue
µj .
Then

AV = [ Av1 Av2 · · · Avp ] = [ µ1v1 µ2v2 · · · µpvp ]

=
[
µ1V e

(p)
1 µ2V e

(p)
2 · · · µpV e

(p)
p

]
=

[
V (µ1e

(p)
1 ) V (µ2e

(p)
2 ) · · · V (µpe

(p)
p )

]
= V

[
µ1e

(p)
1 µ2e

(p)
2 · · · µpe

(p)
p

]
= V diag(µ1, µ2, · · · , µp) = V D

Hence (2) holds.
(b) Suppose (2) holds: the equality AV = V D holds.

Note that AV = [ Av1 Av2 · · · Avp ].
Also note that

V D = V diag(µ1, µ2, · · · , µp) = V
[
µ1e

(p)
1 µ2e

(p)
2 · · · µpe

(p)
p

]
=

[
V (µ1e

(p)
1 ) V (µ2e

(p)
2 ) · · · V (µpe

(p)
p )

]
=

[
µ1V e

(p)
1 µ2V e

(p)
2 · · · µpV e

(p)
p

]
= [ µ1v1 µ2v2 · · · µpvp ]

Then, by the definition of matrix equality, for each j = 1, 2, · · · , p, the equality Avj = µjvj holds. Hence vj

is an eigenvector of A with eigenvalue µj .
Therefore (1) holds.

6. Theorem (3). (Necessary and sufficient conditions for a presentation of diagonalization.)
Let A be an (n× n)-square matrix, and u1,u2, · · · ,un be column vectors with n entries.
Define U = [ u1 u2 · · · un ].
Suppose U is invertible. Then the statements below are logically equivalent:—

(1) For each j = 1, 2, · · · , n, the column vector uj is an eigenvector of A with eigenvalue λj .

(2) U−1AU = diag(λ1, λ2, · · · , λn) is a diagonalization of A.

7. Proof of Theorem (3).
Let A be an (n× n)-square matrix, and u1,u2, · · · ,un be column vectors with n entries.
Define U = [ u1 u2 · · · un ].
Suppose U is invertible.

(a) Suppose (1) holds: for each j = 1, 2, · · · , n, the column vector uj is an eigenvector of A with eigenvalue λj .
By Lemma (2), AU = U diag(λ1, λ2, · · · , λn).
By assumption, U is invertible. Then U−1AU = diag(λ1, λ2, · · · , λn).
Therefore (2) holds.

(b) Suppose (2) holds: U−1AU = diag(λ1, λ2, · · · , λn) is a diagonalization of A.
Then AU = U diag(λ1, λ2, · · · , λn).
Now, by Lemma (2), for each j = 1, 2, · · · , n, the column vector uj is an eigenvector of A with eigenvalue λj .

8. Example (1). (Illustrations on diagonalizations.)

(a) Let A =
[

13 30
−6 −14

]
, and u1 =

[
5
−2

]
, u2 =

[
2
−1

]
, and U = [ u1 u2 ].

i. u1,u2 are eigenvectors of A with respective eigenvalues 1,−2.
ii. u1,u2 are linearly independent. Then U is invertible.

Its matrix inverse is given by U−1 =
[

1 2
−2 −5

]
.
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iii. By direct verification, we see that U−1AU =
[
1 0
0 −2

]
.

(b) Let A =

[
1 1 1
0 2 2
0 0 3

]
, and u1 =

[
1
0
0

]
, u2 =

[
1
1
0

]
, u3 =

[
3
4
2

]
, and U = [ u1 u2 u3 ].

i. u1,u2,u3 are eigenvectors of A with respective eigenvalues 1, 2, 3.
ii. u1,u2,u3 are linearly independent. Then U is invertible.

Its matrix inverse is given by U−1 =

[
1 −1 1/2
0 1 −2
0 0 1/2

]
.

iii. By direct verification, we see that U−1AU =

[
1 0 0
0 2 0
0 0 3

]
.

(c) Let A =

 0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

, and u1 =

 1
−1
1
−1

, u2 =

 1
5
−1
−5

, u3 =

11
3
3

, u4 =

 1
−5
−3
15

, and U = [ u1 u2 u3 u4 ].

i. u1,u2,u3,u4 are eigenvectors of A with respective eigenvalues 1,−1, 3,−3.
ii. u1,u2,u3,u4 are linearly independent. Then U is invertible.

Its matrix inverse is given by U−1 =

 5/8 −1/4 0 −1/8
1/4 1/8 −1/8 0
0 1/8 5/24 1/12
1/8 0 −1/12 1/24

.

iii. By direct verification, we see that U−1AU =

 1 0 0 0
0 −1 0 0
0 0 3 0
0 0 0 −3

.

(d) Let A =

[
2 1 1
1 2 1
1 1 2

]
, and u1 =

[
1
1
1

]
, u2 =

[
1
−1
0

]
, u3 =

[
1
0
−1

]
, and U = [ u1 u2 u3 ].

i. u1,u2,u3 are eigenvectors of A with respective eigenvalues 4, 1, 1.
ii. u1,u2,u3 are linearly independent. Then U is invertible.

Its matrix inverse is given by U−1 =

[
1/3 1/3 1/3
1/3 −2/3 1/3
1/3 1/3 −2/3

]
.

iii. By direct verification, we see that U−1AU =

[
4 0 0
0 1 0
0 0 1

]
.

9. Using the ‘dictionary’ about equivalent formulations of invertibility, or specifically, the logical equivalence between
the invertibility of a square matrix and linear independence of the columns of the square matrix concerned, we
obtain the result below. (This reason has already been hinted by Example (1).)
Theorem (4). (Necessary and sufficient conditions for diagonalizability.)
Suppose A is an (n× n)-square matrix.
Then the statements below are logically equivalent:—

(1) There are n linearly independent eigenvectors of A.
(2) A is diagonalizable.

Now suppose either of (1), (2) holds. (So both of them hold.)
Further suppose u1,u2, · · · ,un are n linearly independent eigenvectors of A, with respective eigenvalues λ1, λ2, · · · , λn.
Define U = [ u1 u2 · · · un ].

Then U−1AU = diag(λ1, λ2, · · · , λn) is a diagonalization of A.
Remark. Theorem (3) and Theorem (4) are almost identical in content. The only difference is about where we
put the emphasis. In Theorem (3), we focus on the question whether something is a diagonalization for a given
matrix. In Theorem (4), we focus on the question whether a given matrix admits any diagonalization.
The proof of Theorem (4) is very similar to that of Theorem (3), and hence is left as an exercise.
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10. Using Theorem (3) and Theorem (4), we can deduce the result below:—
Theorem (5).

Let A be an (n × n)-square matrix. Suppose A is diagonalizable, with a diagonalization U−1AU = D, for some
invertible (n× n)-square matrix U and for some (n× n)-diagonal matrix D.
Then the statements below hold:—

(1) For each positive integer p, the matrix Ap is diagonalizable, with a diagonalization given by U−1ApU = Dp.
(2) Suppose A is invertible. Then D is invertible, and every diagonal entry of D is non-zero.

Moreover, A−1 is diagonalizable, with a diagonalization given by U−1A−1U = D−1.
(3) At is diagonalizable, with a diagonalization given by U tAt(U−1)t = D.

Moreover, for each j = 1, 2, · · · , n, the j-th column of (U−1)t is an eigenvector of A with its corresponding
eigenvalue being the j-th diagonal entry of D.

Proof of Theorem (5). Exercise (in matrix algebra on product and powers, inverse and transpose).
Remark. For each j = 1, 2, · · · , n, denote the j-th column of U by uj , and the j-th diagonal entry of D by λj .

(a) Immediate from the statements (1), (2) in the conclusion are:—
i. For each positive integer p, uj is an eigenvector of Ap with eigenvalue λj

p.
It will further follow that if v is an eigenvector of A then v is an eigenvector of Ap for each positive integer
p.

ii. uj is an eigenvector of A−1 with eigenvalue 1/λj .
It will further follow that if v is an eigenvector of A then v is an eigenvector of A−1.

(b) Immediate from the statement (3) is that A and At have the same collection of eigenvalues: λ1, λ2, · · · , λn are
the eigenvalues of At.
Be aware that it does not follow that uj is an eigenvector of At with eigenvalue λj .
All that can be said is that the j-th column of (U−1)t is an eigenvector of At with eigenvalue λj .

11. Example (2). (Application of Theorem (5) in the computation of positive powers of diagonalizable
square matrices.)

(a) Let A =

[
1 1 1
0 2 2
0 0 3

]
.

A is diagonalizable, with a diagonalization given by U−1AU = D, in which U = [ u1 u2 u3 ], u1 =

[
1
0
0

]
,

u2 =

[
1
1
0

]
, u3 =

[
3
4
2

]
, and D = diag(1, 2, 3).

i. Note that A = UDU−1, and U =

[
1 1 3
0 1 4
0 0 2

]
and U−1 =

[
1 −1 1/2
0 1 −2
0 0 1/2

]
.

ii. For each positive integer p, we have

Ap = UDpU−1 = U(diag(1, 2p, 3p))U−1

=

[
1 1 3
0 1 4
0 0 2

][
1 0 0
0 2p 0
0 0 3p

][
1 −1 1/2
0 1 −2
0 0 1/2

]

=

[
1 −1 + 2p 1/2− 2 · 2p + (3/2) · 3p
0 2p −2 · 2p + 2 · 3p
0 0 3p

]
.

(b) Let A =

[
2 1 1
1 2 1
1 1 2

]
.

A is diagonalizable, with a diagonalization given by U−1AU = D, in which U = [ u1 u2 u3 ], u1 =

[
1
1
1

]
,

u2 =

[
1
−1
0

]
, u3 =

[
1
0
−1

]
, and D = diag(4, 1, 1).
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i. Note that A = U diag(4, 1, 1)U−1, and U =

[
1 1 1
1 −1 0
1 0 −1

]
and U−1 =

1

3

[
1 1 1
1 −2 1
1 1 −2

]
.

ii. For each positive integer p, we have

Ap = UDpU−1 = U(diag(4p, 1, 1))U−1

=
1

3

[
1 1 1
1 −1 0
1 0 −1

][
4p 0 0
0 1 0
0 0 1

][
1 1 1
1 −2 1
1 1 −2

]

=
1

3

[
4p + 2 4p − 1 4p − 1
4p − 1 4p + 2 4p − 1
4p − 1 4p − 1 4p + 2

]
.

12. With an argument similar to that for Theorem (5), we can also deduce the result below:—
Theorem (6).
Let A,B be (n × n)-square matrices. Suppose A,B are diagonalizable, with diagonalizations with respect to a
common invertible (n× n)-square matrix say, U .
Then the statements below hold:—

(1) There are some (n× n)-diagonal matrices D,E so that U−1AU = D and U−1BU = E.

(2) For any numbers α, β, the square matrix αA+βB is diagonalizable, with a diagonalization given by U−1(αA+

βB)U = D + E.

(3) AB diagonalizable, with a diagonalization given by U−1ABU = DE.

13. As suggested by examples that we have seen on eigenvalues and eigenvectors for upper-triangular matrices, we know
that there is no guarantee for an arbitrary square matrix to have sufficiently many linearly independent eigenvectors
for it to be diagonalizable.
Example (3). (Non-diagonalizable square matrices.)

(a) Let A =
[
1 4
0 1

]
.

The only eigenvalue of A is 1.

The only eigenvectors of A are u1 = e
(2)
1 , corresponding to this eigenvalue, and its non-zero scalar multiples.

Then A is not diagonalizable.

(b) Let A =

[
1 4 0
0 1 2
0 0 1

]
.

The only eigenvalue of A is 1.

The only eigenvectors of A are u1 = e
(3)
1 , corresponding to this eigenvalue, and its non-zero scalar multiples.

Then A is not diagonalizable.

14. The ‘relation’ between a diagonalizable square matrix and the diagonal matrix involved in a presentation of diago-
nalization is an instance of something more general, known as similarity for square matrices.
Definition. (Similarity for square matrices.)
Let A,B be (n× n)-square matrices.
We say that A is similar to B if and only if the statement (SI) holds:

(SI) there exists some invertible (n× n)-square matrix U such that A = U−1BU .

Theorem (7). (Similarity as an ‘equivalence relation’.)
The statements below hold:—

(1) Suppose A is an (n× n)-square matrix. Then A is similar to A.
(2) Let A,B be (n× n)-square matrices. Suppose A is similar to B. Then B is similar to A.
(3) Let A,B,C be (n × n)-square matrices. Suppose A is similar to B, and B is similar to C. Then A is similar

to C.
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15. We have seen that some square matrices with real entries may have non-real complex numbers as eigenvalues, which
in turn correspond to eigenvectors with entries involving complex numbers.
The theory developed for diagonalizations and diagonalizability applies to these matrices as well, (as long as we
agree to think of real numbers as complex numbers).
Example (4). (Diagonalization of a square matrix involving the use of complex numbers.)

Let A =
[
1 −1
1 1

]
, and u1 =

[
i
1

]
, u2 =

[−i
1

]
, and U = [ u1 u2 ]

(a) i. u1,u2 are eigenvectors of A with respective eigenvalues 1 + i, 1− i.
ii. u1,u2 are linearly independent (over the complex numbers). Then U is invertible.

Its matrix inverse is given by U−1 =
1

2

[ −i 1
i 1

]
iii. U−1AU =

[
1 + i 0
0 1− i

]
, and A = U

[
1 + i 0
0 1− i

]
U−1.

(b) For each positive integer p, we have

Ap = U
[
1 + i 0
0 1− i

]p
U−1

=
1

2

[
i −i
1 1

][
(1 + i)p 0

0 (1− i)p

][ −i 1
i 1

]
=

1

2

[
(1 + i)p + (1− i)p i(1 + i)p − i(1− i)p

−i(1 + i)p + i(1− i)p (1 + i)p + (1− i)p

]
Although the respective presentations of the entries of Ap involve the use of complex numbers, the entries
themselves are in fact all real. (This is expected because the entries of A are all real.)
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