
6.1 Eigenvalues and eigenvectors for square matrices.

0. Assumed background.

• What has been covered in Topics 1-5, especially:—
∗ 3.3 Various necessary and sufficient conditions for invertibility.
∗ 4.4 Basis for subspaces of column vectors.
∗ 4.5 Dimension for subspaces of column vectors.
∗ 4.7 Basis and dimension, null space, and the notion of subspace of a subspace.
∗ 5.2 Row operations and determinants.

Abstract. We introduce:—
• the notions of eigenvalues and eigenvectors for square matrices, and
• various equivalent formulations for the notion of eigenvalues.

1. Definition. (Eigenvalues and eigenvectors.)
Let A be an (n× n)-square matrix. Let λ be a number. Let v be a non-zero column vector with n entries.
We say v is an eigenvector of A with eigenvalue λ if and only if Av = λv.
In this situation, we may equivalently say that λ is an eigenvalue of A with a corresponding eigenvector v.
Further remarks on terminologies.

(a) We may write
‘the number λ is an eigenvalue of A’

(without mentioning any specific corresponding eigenvector) exactly when there is some non-zero column vector
u so that u is an eigenvector of A with eigenvalue λ.

(b) We may write
‘the non-zero column vector v is an eigenvector of A’

(without mentioning its corresponding eigenvalue) exactly when the equality Av = µv holds for some number
µ.

2. We state a few basic results about eigenvalues and eigenvectors that follow immediately from definition. Their
proofs are left as exercises.
Theorem (1). (Uniqueness of eigenvalue corresponding to the same eigenvector.)
Let A be an (n× n)-square matrix.
Let v be a non-zero column vector with n real entries. Let λ, µ be numbers.
Suppose v is an eigenvector of A with eigenvalue λ and also with eigenvalue µ.
Then λ = µ.
Remark. In plain words, every eigenvector of A corresponds to a unique eigenvalue.
So it makes sense to write ‘λ is the eigenvalue of A corresponding to eigenvector v’.

3. Theorem (2). (Non-zero scalar multiples of eigenvectors.)
Let A be an (n× n)-square matrix.
Let v be a non-zero column vector with n entries. Let λ be a number.
Suppose v is an eigenvector of A with eigenvalue λ.
Then, every non-zero scalar multiple of v is an eigenvector of A with eigenvalue λ.
Remark. We have not ruled out the possibility that non-zero column vectors which are not scalar multiples of
each other can be eigenvectors of A with the same eigenvalue.

4. Theorem (2) is superceded by Theorem (3).
Theorem (3). (Linear combinations of eigenvectors with common eigenvalue.)
Let A be an (n× n)-square matrix.
Let u1,u2, · · · ,uk be non-zero column vectors with n entries.
Suppose u1,u2, · · · ,uk are eigenvectors of A with a common eigenvalue λ.
Then every linear combination of u1,u2, · · · ,uk, except the zero column vector with n entries, is also an eigenvector
of A with eigenvalue λ.
Remarks.
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(a) As shall be seen in Example (1), it is possible for a square matrix to have two eigenvectors which are not scalar
multiples of each other but which correspond to the same eigenvalue.

(b) At this moment, we deliberately refrain from saying anything of linear combinations of eigenvectors of A with
distinct eigenvalues.

5. Example (1). (Eigenvalues and eigenvectors.)

(a) Let A =
[

13 30
−6 −14

]
, and u1 =

[
5
−2

]
, u2 =

[
2
−1

]
.

Note that neither u1,u2 is the zero column vector.

i. We have Au1 =
[
5
−2

]
= 1 · u1.

Then u1 is an eigenvector of A with eigenvalue λ1 = 1.
Every non-zero scalar multiple of u1 is also an eigenvector of A with eigenvalue λ1.

ii. We have Au2 =
[−4
2

]
= −2u2.

Then u2 is an eigenvector of A with eigenvalue λ2 = −2.
Every non-zero scalar multiple of u2 is also an eigenvector of A with eigenvalue λ2.

(b) Let A =

[
1 1 1
0 2 2
0 0 3

]
, and u1 =

[
1
0
0

]
, u2 =

[
1
1
0

]
, u3 =

[
3
4
2

]
.

Note that none of u1,u1,u3 is the zero column vector.

i. We have Au1 =

[
1
0
0

]
= 1 · u1.

Then u1 is an eigenvector of A with eigenvalue λ1 = 1.
Every non-zero scalar multiple of u1 is also an eigenvector of A with eigenvalue λ1.

ii. We have Au2 =

[
2
2
0

]
= 2u2.

Then u2 is an eigenvector of A with eigenvalue λ2 = 2.
Every non-zero scalar multiple of u2 is also an eigenvector of A with eigenvalue λ2.

iii. We have Au3 =

[
9
12
6

]
= 3u3.

Then u3 is an eigenvector of A with eigenvalue λ3 = 3.
Every non-zero scalar multiple of u3 is also an eigenvector of A with eigenvalue λ3.

(c) Let A =

 0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

, and u1 =

 1
−1
1
−1

, u2 =

 1
5
−1
−5

, u3 =

11
3
3

, u4 =

 1
−5
−3
15

.

Note that none of u1,u2,u3,u4 is the zero column vector.

i. We have Au1 =

 1
−1
1
−1

 = 1 · u1.

Then u1 is an eigenvector of A with eigenvalue λ1 = 1.

ii. We have Au2 =

−1
−5
1
5

 = −1 · u2.

Then u2 is an eigenvector of A with eigenvalue λ2 = −1.

iii. We have Au3 =

33
9
9

 = 3u3.

Then u3 is an eigenvector of A with eigenvalue λ3 = 3.

iv. We have Au4 =

 −3
15
9

−45

 = −3u4.

Then u4 is an eigenvector of A with eigenvalue λ4 = −3.
v. For each j = 1, 2, 3, 4, every non-zero scalar multiple of uj is an eigenvector of A with eigenvalue λj .
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(d) Let A =

[
2 1 1
1 2 1
1 1 2

]
, and u1 =

[
1
1
1

]
, u2 =

[
1
−1
0

]
, u3 =

[
1
0
−1

]
.

Note that none of u1,u2,u3 is the zero column vector.

i. We have Au1 =

[
4
4
4

]
= 4u1.

Then u1 is an eigenvector of A with eigenvalue λ1 = 4.
Every non-zero scalar multiple of u1 is also an eigenvector of A with eigenvalue λ1.

ii. We have Au2 =

[
1
−1
0

]
= 1 · u2.

Then u2 is an eigenvector of A with eigenvalue λ2 = 1.

iii. We have Au3 =

[
1
0
−1

]
= 1 · u2.

Then u2 is an eigenvector of A with eigenvalue λ3 = 1.
iv. Observations.

Note that u2,u3 are eigenvectors of A with the same eigenvalue, namely, λ2 = λ3 = 1.
Then every linear combination of u2,u3 which is not the zero column vector is also an eigenvector of A
with eigenvalue λ2.

v. Reminder.
Note that u2,u3 are not non-zero scalar multiples of each other.
As u2,u3 are linearly independent, whenever α, β are non-zero, the linear combination αu2+βu3 is neither
a non-zero scalar multiple of u2 nor a non-zero scalar multiple of u3.
Nonetheless this does not prevent αu2 + βu3 from being an eigenvector of A with eigenvalue λ2.

6. In order to study questions about eigenvalues and eigenvectors more efficiently we link up the notion of eigenvalues
and eigenvectors with what we learnt about homogeneous systems of linear equations.
Lemma (4).
Suppose A is an (n× n)-square matrix, λ is a number, and v is a non-zero column vector with n entries.
Then the statements (⋆), (⋆⋆) are logically equivalent:—

(⋆) v is an eigenvector of A with eigenvalue λ.
(⋆⋆) v is a non-trivial solution of the homogeneous system LS(A− λIn, 0n).

7. Proof of Lemma (4).
Suppose A is an (n× n)-square matrix, λ is a number, and v is a non-zero column vector with n entries.

(a) Suppose (⋆) holds: v is an eigenvector of A with eigenvalue λ.
Then Av = λv = λInv.
Therefore (A− λIn)v = 0n.
Hence (⋆⋆) holds: v is a non-trivial solution of the homogeneous system LS(A− λIn, 0n).

(b) Suppose (⋆⋆) holds: v is a non-trivial solution of the homogeneous system LS(A− λIn, 0n).
Then (A− λIn)v = 0n.
Therefore Av = (A− λIn + λIn)v = (A− λIn)v + λInv = 0n + λv = λv.
Hence (⋆) holds: v is an eigenvector of A with eigenvalue λ.

8. Combined with the ‘dictionary’ on the equivalent formulations for the notion of the invertibility of square matrices,
Lemma (4) immediately yields the result below:—
Theorem (5). (Equivalent formulations for the notion of eigenvalues for square matrices.)
Suppose A is an (n× n)-square matrix, and λ is a number. Then the statements below are logically equivalent:—

(1) λ is an eigenvalue of A.
(2) The homogeneous system LS(A− λIn, 0n) has a non-trivial solution.
(3) A− λIn is not invertible.
(4) The rank of A− λIn is at most n− 1.
(5) det(A− λIn) = 0.
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Now suppose one of (1), (2), (3), (4), (5) holds. (So all of them hold.)
Further suppose v is a column vector with n entries.
Then v is an eigenvector of A with eigenvalue λ if and only if v is a non-trivial solution of LS(A− λIn, 0n).
Remark. Hence we have yet another small ‘extension’ of the ‘dictionary’ about equivalent formulations of
invertibility for square matrices:—
Suppose A is an (n× n)-square matrix. Then:—

(a) A is not invertible if and only if 0 is an eigenvalue of A.
(b) A is invertible if and only if 0 is not an eigenvalue of A.

9. When we restrict ourselves to real numbers, and to matrices and vectors with real entries, we can make the connection
amongst the notions of eigenvalue, eigenvector, null space and dimension below:—
Theorem (6).
Suppose A is an (n × n)-square matrix with real entries, and λ is a real number. Then the statements below are
logically equivalent:—

(I) λ is an eigenvalue of A.
(II) N (A− λIn) is of dimension at least 1 as a subspace of Rn over the reals.

Now suppose any one of (I), (II) holds. (So both of them hold.)
Further suppose v ∈ Rn and v ̸= 0n.
Then v is an eigenvector of A with eigenvalue λ if and only if v ∈ N (A− λIn).
Remark on terminology. In the context of Theorem (6), we refer to N (A− λIn) as the eigenspace of A

with eigenvalue λ, and we call its dimension as geometric multiplicity of the eigenvalue λ of A.
Further remark. When we consistently read ‘R’ as ‘C’ and ‘real’ as ‘complex’ (and further make sense of phrases
like ‘null space of a matrix with complex entries’ et cetera), we will obtain an analogous result about eigenvalues
and eigenvectors for square matrices whose entries are complex numbers.

10. Example (2). (Example (1) re-done, with help from Theorem (5) and Theorem (6).)

(a) Let A =
[

13 30
−6 −14

]
.

i. For any number λ, we have

det(A− λI2) = · · · = λ2 + λ− 2 = (λ− 1)(λ+ 2).

So the only eigenvalues of A are 1,−2.
Write λ1 = 1, λ2 = −2.

ii. Note that A− λ1I2 =
[

12 30
−6 −15

]
.

By studying the homogeneous system LS(A− λ1I2, 02), we find that:—

• u1 =
[
5
−2

]
is an eigenvector of A with eigenvalue λ1.

• dim(N (A− λ1I2)) = 1, and u1 constitutes a basis for N (A− λ1I2).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero number α such that v = αu1.

iii. Note that A− λ2I2 =
[

15 30
−6 −12

]
.

By studying the homogeneous system LS(A− λ2I2, 02), we find that:—

• u2 =
[−4
2

]
is an eigenvector of A with eigenvalue λ2.

• dim(N (A− λ2I2)) = 1, and u2 constitutes a basis for N (A− λ2I2).
As a consequence, v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some non-zero number α such that v = αu2.

(b) Let A =

[
1 1 1
0 2 2
0 0 3

]
.
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i. For any number λ, we have

det(A− λI3) = · · · = −(λ− 1)(λ− 2)(λ− 3).

So the only eigenvalues of A are 1, 2, 3.
Write λ1 = 1, λ2 = 2, λ3 = 3.

ii. Note that A− λ1I3 =

[
0 1 1
0 1 2
0 0 2

]
.

By studying the homogeneous system LS(A− λ1I3, 03), we find that:—

• u1 =

[
1
0
0

]
is an eigenvector of A with eigenvalue λ1.

• dim(N (A− λ1I3)) = 1, and u1 constitutes a basis for N (A− λ1I3).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero number α such that v = αu1.

iii. Note that A− λ2I3 =

[
−1 1 1
0 0 2
0 0 1

]
.

By studying the homogeneous system LS(A− λ2I3, 03), we find that:—

• u2 =

[
1
1
0

]
is an eigenvector of A with eigenvalue λ2.

• dim(N (A− λ2I3)) = 1, and u2 constitutes a basis for N (A− λ2I3).
As a consequence, v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some non-zero number α such that v = αu2.

iv. Note that A− λ3I3 =

[
−2 1 1
0 −1 2
0 0 0

]
.

By studying the homogeneous system LS(A− λ3I3, 03), we find that:—

• u3 =

[
3
4
2

]
is an eigenvector of A with eigenvalue λ3.

• dim(N (A− λ3I3)) = 1, and u3 constitutes a basis for N (A− λ3I3).
As a consequence, v is an eigenvector of A with eigenvalue λ3 if and only if
• there exists some non-zero number α such that v = αu3.

(c) Let A =

 0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

.

i. For any number λ, we have

det(A− λI4) = · · · = (λ− 1)(λ+ 1)(λ− 3)(λ+ 3).

So the only eigenvalues of A are 1,−1, 3,−3.
Write λ1 = 1, λ2 = −1, λ3 = 3, λ4 = −3.

ii. Note that A− λ1I4 =

 −1 0 1 0
0 −1 0 1
2 1 0 1
−5 2 5 −2

.

By studying the homogeneous system LS(A− λ1I4, 04), we find that:—

• u1 =

 1
−1
1
−1

 is an eigenvector of A with eigenvalue λ1.

• dim(N (A− λ1I4)) = 1, and u1 constitutes a basis for N (A− λ1I4).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero number α such that v = αu1.

iii. Note that A− λ2I4 =

 1 0 1 0
0 1 0 1
2 1 2 1
−5 2 5 0

.

By studying the homogeneous system LS(A− λ2I4, 04), we find that:—
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• u2 =

 1
5
−1
−5

 is an eigenvector of A with eigenvalue λ2.

• dim(N (A− λ2I4)) = 1, and u2 constitutes a basis for N (A− λ2I4).
As a consequence, v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some non-zero number α such that v = αu2.

iv. Note that A− λ3I4 =

 −3 0 1 0
0 −3 0 1
2 1 −2 1
−5 2 5 −4

.

By studying the homogeneous system LS(A− λ3I4, 04), we find that:—

• u3 =

11
3
3

 is an eigenvector of A with eigenvalue λ3.

• dim(N (A− λ3I4)) = 1, and u3 constitutes a basis for N (A− λ3I4).
As a consequence, v is an eigenvector of A with eigenvalue λ3 if and only if
• there exists some non-zero number α such that v = αu3.

v. Note that A− λ4I4 =

 3 0 1 0
0 3 0 1
2 1 4 1
−5 2 5 2

.

By studying the homogeneous system LS(A− λ4I4, 04), we find that:—

• u4 =

 1
−5
−3
15

 is an eigenvector of A with eigenvalue λ4.

• dim(N (A− λ4I4)) = 1, and u4 constitutes a basis for N (A− λ4I4).
As a consequence, v is an eigenvector of A with eigenvalue λ4 if and only if
• there exists some non-zero number α such that v = αu4.

(d) Let A =

[
2 1 1
1 2 1
1 1 2

]
.

i. For any number λ, we have
det(A− λI3) = · · · = −(λ− 4)(λ− 1)2.

So the only eigenvalues of A are 4, 1.
Write λ1 = 4, λ2 = 1.

ii. Note that A− λ1I3 =

[
−2 1 1
1 −2 1
1 1 −2

]
.

By studying the homogeneous system LS(A− λ1I3, 03), we find that:—

• u1 =

[
1
1
1

]
is an eigenvector of A with eigenvalue λ1.

• dim(N (A− λ1I3)) = 1, and u1 constitutes a basis for N (A− λ1I3).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero number α such that v = αu1.

iii. Note that A− λ2I3 =

[
1 1 1
1 1 1
1 1 1

]
.

By studying the homogeneous system LS(A− λ2I3, 03), we find that:—

• Each of u2 =

[
1
−1
0

]
, u3 =

[
1
0
−1

]
is an eigenvector of A with eigenvalue λ2.

• dim(N (A− λ2I3)) = 2, and u2,u3 constitute a basis for N (A− λ2I3).
As a consequence, v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some number α1, α2, not both zero, such that v = α1u1 + α2u2.

11. We now turn to the study of eigenvalues and eigenvectors of some special types of square matrices.
Theorem (7). (Eigenvalues and eigenvectors of diagonal matrices.)
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Suppose D be the (n×n)-diagonal matrix with diagonal entries λ1, λ2, · · · , λn from left to right. (We do not assume
λ1, λ2, · · · , λn to be pairwise distinct.)
Then the statements below hold:—

(1) For each j = 1, 2, · · ·n, the number λj is an eigenvalue of D with a corresponding eigenvector e
(n)
j .

(2) λ1, λ2, · · · , λn are the only eigenvalues of A.
(3) Suppose λ is an eigenvalue of D, and λj1 = λj2 = · · · = λjq = λ for some j1, j2, · · · , jq between 1 and n.

Then every linear combination of e(n)j1
, e

(n)
j2

, · · · , e(n)jq
which is not the zero column vector is an eigenvector of

D with eigenvalue λ.

In particular:—

(a) Every non-zero column vector with n entries is an eigenvector of On×n with eigenvalue 0.
(b) Every non-zero column vector with n entries is an eigenvector of In with eigenvalue 1.

Proof of Theorem (7). Exercise (about the definitions.)

12. Theorem (8). (Eigenvalues and ‘special eigenvectors’ of upper-triangular matrices.)
Suppose A is an (n× n)-upper-triangular matrix, whose (i, j)-th entry is denoted by aij for each i, j.
Then the statements below hold:—

(1) Suppose λ is a number.
Then λ is an eigenvalue of A if and only if λ is amongst a11, a22, · · · , ann.

(2) e
(n)
1 is an eigenvector of A, with eigenvalue a11.

Proof of Theorem (8). Exercise (about the definitions).
Remark. We refrain from stating more about eigenvectors of upper triangular matrices than the statement (2) in
the conclusion of Theorem (8). Exactly what other eigenvectors beyond non-zero scalar multiples of e(n)1 the matrix
A may possess depends on what diagonal entries A may have, and how the non-zero entries above its diagonal are
‘distributed’.

13. Example (3). (Eigenvalues and eigenvectors of upper-triangular matrices.)

(a) Let A =
[
1 4
0 2

]
.

The only eigenvalues of A are 1, 2.
Write λ1 = 1, λ2 = 2.

i. u1 = e
(2)
1 =

[
1
0

]
is an eigenvector of A with eigenvalue λ1.

Note that A− λ1I2 =
[
0 4
0 1

]
.

We find that dim(N (A− λ1I2)) = 1, and u1 constitutes a basis for N (A− λ1I2).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero number α such that v = αu1.

ii. Note that A− λ2I2 =
[ −1 4

0 0

]
.

By studying the homogeneous system LS(A− λ2I2, 02), we find that:—

• u2 = e
(2)
2 + 4e

(2)
1 =

[
4
1

]
is an eigenvector of A with eigenvalue λ2.

• dim(N (A− λ2I2)) = 1, and u2 constitutes a basis for N (A− λ2I2).
As a consequence, v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some non-zero number α such that v = αu2.

(b) Let A =

[
1 4 12
0 2 6
0 0 3

]
.

The only eigenvalues of A are 1, 2, 3.
Write λ1 = 1, λ2 = 2, λ3 = 3.
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i. u1 = e
(3)
1 =

[
1
0
0

]
is an eigenvector of A with eigenvalue λ1.

Note that A− λ1I3 =

[
0 4 12
0 1 6
0 0 2

]
.

We find that dim(N (A− λ1I3)) = 1, and u1 constitutes a basis for N (A− λ1I3).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero number α such that v = αu1.

ii. Note that A− λ2I3 =

[
−1 4 12
0 0 6
0 0 1

]
.

By studying the homogeneous system LS(A− λ2I3, 03), we find that:—

• u2 = e
(3)
2 + 4e

(3)
1 =

[
4
1
0

]
is an eigenvector of A with eigenvalue λ2.

• dim(N (A− λ2I3)) = 1, and u2 constitutes a basis for N (A− λ2I3).
As a consequence, v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some non-zero number α such that v = αu2.

iii. Note that A− λ3I3 =

[
−2 4 12
0 −1 6
0 0 0

]
.

By studying the homogeneous system LS(A− λ3I3, 03), we find that:—

• u3 = e
(3)
3 + 18e

(3)
1 + 6e

(3)
2 =

[
18
6
1

]
is an eigenvector of A with eigenvalue λ3.

• dim(N (A− λ3I3)) = 1, and u3 constitutes a basis for N (A− λ3I3).
As a consequence, v is an eigenvector of A with eigenvalue λ3 if and only if
• there exists some non-zero number α such that v = αu3.

(c) Let A =
[
1 4
0 1

]
.

The only eigenvalue of A is 1.
Write λ1 = 1.

u1 = e
(2)
1 =

[
1
0

]
is an eigenvector of A with eigenvalue λ1.

Note that A− λ1I2 =
[
0 4
0 0

]
.

Note that dim(N (A− λ1I2)) = 1.
Then u1 constitute a basis for N (A− λ1I2).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if

• there exists some non-zero number α such that v = αu1.

(d) Let A =

[
1 4 0
0 1 2
0 0 1

]
.

The only eigenvalue of A is 1.
Write λ1 = 1.

u1 = e
(3)
1 =

[
1
0
0

]
is an eigenvector of A with eigenvalue λ1.

Note that A− λ1I3 =

[
0 4 0
0 0 2
0 0 0

]
.

Note that dim(N (A− λ1I3)) = 1.
Then u1 constitute a basis for N (A− λ1I3).
As a consequence, v is an eigenvector of A with eigenvalue λ1 if and only if

• there exists some non-zero number α such that v = αu1.

Remark. As Example (3) suggests, when a square matrix A has an eigenvalue λ, all we can immediately say
is that there is an eigenvector v corresponding to the eigenvalue λ and that the non-zero scalar multiple of v are
eigenvectors of A with eigenvalue λ. It is not easy to say anything beyond this, even when A is as ‘simple’ as an
upper-triangular matrix.
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14. The example below suggests that even when the entries of a square matrix are all real, it can happen that some of
its eigenvalues are non-real, and the corresponding eigenvectors will (have to) involve complex numbers.
Example (4).

(a) Let A =
[
1 −1
1 1

]
.

i. For any number λ, we have

det(A− λI2) = · · · = λ2 − 2λ+ 2 = (λ− 1)2 + 1 = (λ− 1− i)(λ− 1 + i).

So the only eigenvalues of A are 1 + i, 1− i.
Write λ1 = 1 + i, λ2 = 1− i.

ii. Note that A− λ1I2 =
[ −i −1

1 −i

]
.

By studying the homogeneous system LS(A− λ1I2, 02), we find that:—

• u1 =
[
i
1

]
is an eigenvector of A with eigenvalue λ1.

We can further prove that v is an eigenvector of A with eigenvalue λ1 if and only if
• there exists some non-zero complex number α such that v = αu1.

iii. Note that A− λ2I2 =
[

i −1
1 i

]
.

By studying the homogeneous system LS(A− λ2I2, 02), we find that:—

• u2 =
[−i
1

]
is an eigenvector of A with eigenvalue λ2.

We can further prove that v is an eigenvector of A with eigenvalue λ2 if and only if
• there exists some non-zero complex number α such that v = αu2.

(b) Let A =

 1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

.

For any number λ, we have

det(A− λI4) = · · ·

= (λ− 1)4 + 1 = [(λ− 1)2 − i][(λ− 1)2 + i]

=

[
λ− 1−

(
1√
2
+

i√
2

)][
λ− 1−

(
− 1√

2
− i√

2

)][
λ− 1−

(
− 1√

2
+

i√
2

)][
λ− 1−

(
1√
2
− i√

2

)]
=

[
λ−

(
1 +

1√
2
+

i√
2

)][
λ−

(
1− 1√

2
− i√

2

)][
λ−

(
1− 1√

2
+

i√
2

)][
λ−

(
1 +

1√
2
− i√

2

)]
.

So the only eigenvalues of A are

λ1 = (1 +
1√
2
) +

i√
2
, λ2 = (1− 1√

2
)− i√

2
, λ3 = (1− 1√

2
) +

i√
2
, λ4 = (1 +

1√
2
)− i√

2
.

They are all non-real complex numbers. Each of them corresponds to some eigenvector with non-real entries.

Write ζ =
1√
2
+

i√
2

, η = − 1√
2
+

i√
2

.

The numbers ζ̄ =
1√
2
− i√

2
, η̄ = − 1√

2
− i√

2
, are known as the complex conjugates of ζ, η respectively.

i. An eigenvector u1 of A with eigenvalue λ1 is given by u1 =

−η̄
η̄
−η̄
1

.

ii. An eigenvector u2 of A with eigenvalue λ2 is given by u2 =

−ζ
ζ
−ζ
1

.

iii. An eigenvector u3 of A with eigenvalue λ3 is given by u3 =

−ζ̄
ζ̄
−ζ̄
1

.

iv. An eigenvector u4 of A with eigenvalue λ4 is given by u4 =

−η
η
−η
1

.
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