5.3.2 Answers to Exercise.

1. (a) 0 .
(b) 0 .
(c) 5040 .
(d) 0 .
(e) 0 .
(f) 0 .
2. (a) i. $A=\left[\begin{array}{lllll}2 & 3 & 2 & 2 & 2 \\ 3 & 5 & 3 & 3 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & x & 1\end{array}\right] \xrightarrow{-2 R_{3}+R_{1}} \xrightarrow{-3 R_{3}+R_{2}} \xrightarrow{-1 R_{3}+R_{4}} B=\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & x & 1\end{array}\right]$. $B^{t}=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 & x \\ 0 & 1 & 1 & 4 & 1\end{array}\right]$.
ii. $B^{t}=\left[\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 & x \\ 0 & 1 & 1 & 4 & 1\end{array}\right] \xrightarrow{-1 R_{3}+R_{5}} \xrightarrow{-2 R_{5}+R_{2}} \xrightarrow{-1 R_{3}+R_{2}} C^{t}=\left[\begin{array}{ccccc}0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -5 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 & x \\ 0 & 1 & 0 & 2 & 0\end{array}\right]$.
$C=\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & -5 & 2 & 3 & 2 \\ 0 & 0 & 1 & x & 0\end{array}\right]$.
iii. $\operatorname{det}(A)=2 x-3$.
iv. $\operatorname{det}\left(A B^{2} A^{t} C^{2}\right)=(2 x-3)^{6}$.
(b) i. $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ constitute a basis for \mathbb{R}^{5} over the reals if and only if $x \neq \frac{3}{2}$.
ii. $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ constitute a basis for \mathbb{R}^{5} over the reals if and only if $x \neq \frac{3}{2}$.
3. (a) $\operatorname{det}(U)=(a+1)(b+1)(c+1)(d+1)\left[1-\frac{a}{a+1}-\frac{b}{b+1}-\frac{c}{c+1}-\frac{d}{d+1}\right]$.
(b) Suppose $a=b=c=d$. (Recall $a \neq-1$.)

Then $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are linearly dependent over the reals if and only if $a=\frac{1}{3}$.
4. Let a be a number, and A be the (5×5)-square matrix given by

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
a & a & a & a & 1 \\
2 & 2 & 2 & a & 1 \\
3 & 3 & 2 & a & 1 \\
4 & 3 & 2 & a & 1
\end{array}\right]
$$

(a) Show that $\operatorname{det}(A)=p(a-m)(a-n)$.

Here m, n, p are some non-zero integers, whose values are independent of that of a, and which satisfies $m<n$. You have to give the values of m, n, p explicitly.
(b) For which values of a does the homogeneous system of linear equations $\mathcal{L S}(A, \mathbf{0})$ have a non-trivial solution?
(a) $\operatorname{det}(A)=-(a-1)(a-2)$.
(b) $\mathcal{L S}(A, \mathbf{0})$ has a non-trivial solution if and only if $\operatorname{det}(A)=0$. The latter happens if and only if $(a=1$ or $a=2)$.
5. (a) -
(b) i. a^{2}.
ii. $\left(e_{1} b_{1}+e_{2} b_{2}+e_{3} b_{3}\right)^{2}$.
6. \qquad
7. \qquad
8. (a) $A \xrightarrow{-1 R_{1}+R_{2}} \xrightarrow{-1 R_{1}+R_{3}} \xrightarrow{-1 R_{1}+R_{4}} \xrightarrow{-1 R_{1}+R_{5}} \xrightarrow{-1 R_{1}+R_{6}} B=\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -a & 0 & 0 & 0 & 0 \\ 0 & 0 & 1-a & 0 & 0 & 0 \\ 0 & 0 & 0 & 2-a & 0 & 0 \\ 0 & 0 & 0 & 0 & 3-a & 0 \\ 0 & 0 & 0 & 0 & 0 & 4-a\end{array}\right]$.
(b) $\operatorname{det}(A)=-a(1-a)(2-a)(3-a)(4-a)$.
(c) A is invertible if and only if a is not amongst $0,1,2,3,4$.
9. (a) i. If $a=0$ or $b=0$ or $d=0$ then $\operatorname{det}(A)=0$.

Reason: When $a=0$ or $b=0$ or $d=0$, some row of A is a row of 0 's.
ii. If $b=c$ or $b=d$ or $a=c$ then $\operatorname{det}(A)=0$.

Reason: When $b=c$ or $b=d$ or $a=c$, two columns of A are scalar multiples of each other.
(b) i.

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
a & 0 & a & 0 & a \\
b & 0 & c & 0 & b \\
b^{2} & 0 & c^{2} & 0 & d^{2} \\
0 & a b & 0 & b c & 0 \\
0 & c d & 0 & a d & 0
\end{array}\right] \quad \xrightarrow{\frac{1}{a} R_{1}} \xrightarrow{\frac{1}{b} R_{4}} \xrightarrow{\frac{1}{d} R_{5}}\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
b & 0 & c & 0 & b \\
b^{2} & 0 & c^{2} & 0 & d^{2} \\
0 & a & 0 & c & 0 \\
0 & c & 0 & a & 0
\end{array}\right] \\
& \xrightarrow{-c R_{1}+R_{2}} \xrightarrow{-c^{2} R_{1}+R_{3}}\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
b-c & 0 & 0 & 0 & b-c \\
b^{2}-c^{2} & 0 & 0 & 0 & d^{2}-c^{2} \\
0 & a & 0 & c & 0 \\
0 & c & 0 & a & 0
\end{array}\right] \\
& \xrightarrow{\frac{1}{b-c} R_{2}}\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
b^{2}-c^{2} & 0 & 0 & 0 & d^{2}-c^{2} \\
0 & a & 0 & c & 0 \\
0 & c & 0 & a & 0
\end{array}\right] \\
& \xrightarrow{1 R_{4}+R_{5}} \xrightarrow{\frac{1}{a-c} R_{5}} \xrightarrow{a R_{5}+R_{4}}\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
b^{2}-c^{2} & 0 & 0 & 0 & d^{2}-c^{2} \\
0 & 0 & 0 & a+c & 0 \\
0 & -1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

ii. $\operatorname{det}(B)=\operatorname{det}\left(\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ b^{2}-c^{2} & 0 & 0 & 0 & d^{2}-c^{2} \\ 0 & 0 & 0 & a+c & 0 \\ 0 & -1 & 0 & 1 & 0\end{array}\right]\right)=(a+c)(d-b)(d+b)$.
$\operatorname{det}(A)=a b d(b-c)(a-c) \operatorname{det}(B)=a b d(b-c)(a-c)(a+c)(d-b)(d+b)$.
(c) -
10. (a) i. $U \xrightarrow{-1 R_{1}+R_{2}} \xrightarrow{-1 R_{1}+R_{3}} \xrightarrow{-1 R_{1}+R_{4}} \xrightarrow{-1 R_{1}+R_{5}} \xrightarrow{-1 R_{1}+R_{6}} V=\left[\begin{array}{cccccc}1+a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
ii. $\operatorname{det}(U)=1+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$.
(b) i. Yes.
ii. Yes.
iii. Yes.
11. (a) -
(b) B is invertible if and only if x is not amongst $1,-1, \sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3}$.
12. (a) i.
ii. $\operatorname{det}(A)=(-1)^{n(n-1) / 2} \cdot n^{n-1} \cdot\left(x+\frac{n+1}{2}\right)$.
(b) i. $\operatorname{det}(C)=625 b^{4}(a+2 b)$.
ii. Suppose $b \neq 0$.

The system $\mathcal{L S}(C, \mathbf{d})$ consistent for every column vector \mathbf{d} with five entries if and only if $a \neq-2 b$.
13. (a) $x_{1}=a, x_{2}=a^{2}-1$.
(b)
(c) i.
ii. If $a=2$ then $x_{n}=n+1$ for each positive integer n.

If $a=-2$ then $x_{n}=(-1)^{n}(n+1)$ for each positive integer n.
14. (a)
(b) -
(c) $(\operatorname{det}(A))^{2}=1$ and $(\operatorname{det}(B))^{2}=1$.
(d) $A+B$ is not invertible.
15. \qquad

