5.3.2 Exercise: Determinants.

1. Evaluate the determinants of the square matrices below. (Be observant; try not to start by expanding along a random row/column and computing by brute force.)
(a)
$\left[\begin{array}{llllll}1 & 6 & 0 & 4 & 1 & 5 \\ 2 & 5 & 0 & 1 & 6 & 3 \\ 3 & 4 & 0 & 5 & 2 & 1 \\ 4 & 3 & 0 & 2 & 5 & 6 \\ 5 & 2 & 0 & 6 & 3 & 4 \\ 6 & 1 & 0 & 3 & 4 & 2\end{array}\right]$
(c) $\left[\begin{array}{llllll}2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 4 & 5 & 6 & 7 \\ 0 & 0 & 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & 0 & 0 & 7\end{array}\right]$
(e) $\left[\begin{array}{llllll}1 & 3 & 1 & 2 & 3 & 4 \\ 2 & 6 & 6 & 7 & 8 & 9 \\ 1 & 3 & 1 & 3 & 5 & 7 \\ 2 & 6 & 3 & 5 & 7 & 9 \\ 1 & 3 & 2 & 4 & 6 & 8 \\ 2 & 6 & 4 & 5 & 6 & 7\end{array}\right]$
(b) $\left[\begin{array}{llllll}5 & 7 & 3 & 9 & 1 & 6 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 7 & 3 & 1 & 6 & 9 \\ 3 & 4 & 8 & 5 & 6 & 1 \\ 1 & 6 & 3 & 5 & 7 & 9\end{array}\right]$
(d) $\left[\begin{array}{llllll}1 & 0 & 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 0 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 & 4 \\ 7 & 6 & 5 & 4 & 3 & 2 \\ 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 7 & 6 & 5 & 4 & 3\end{array}\right]$
(f) $\left[\begin{array}{llllll}3 & 5 & 4 & 6 & 7 & 8 \\ 9 & 7 & 5 & 8 & 6 & 4 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 4 & 9 & 6 & 8 & 7 & 5 \\ 2 & 2 & 7 & 2 & 2 & 2 \\ 3 & 3 & 8 & 3 & 3 & 3\end{array}\right]$
2. Let x be a number.
(a) Let

$$
A=\left[\begin{array}{ccccc}
2 & 3 & 2 & 2 & 2 \\
3 & 5 & 3 & 3 & 4 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 1 & x & 1
\end{array}\right], \quad B=\left[\begin{array}{lllll}
0 & * & 0 & 0 & 0 \\
0 & * & 0 & 0 & * \\
1 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & x & *
\end{array}\right], \quad C=\left[\begin{array}{ccccc}
0 & \star & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & \star & \star & 0 \\
0 & \star & \star & \star & \star \\
0 & 0 & \star & x & 0
\end{array}\right]
$$

in which the $*$'s and the \star 's stand for various non-zero numbers, whose values are determined according to (I), (II):-
(I) A is row-equivalent to B under some sequence of three row operations.
(II) B^{t} is row-equivalent to C^{t} under some sequence of three row operations.
i. Find B, and write down B^{t}.
ii. Find C^{t}, and write down C. (Try to 'retain' the entries of value 0 in B as hard as possible.)
iii. What is the value of $\operatorname{det}(A)$? Leave your answer in terms of x.
iv. What is the value of $\operatorname{det}\left(A B^{2} A^{t} C^{2}\right)$? Leave your answer in terms of x, (and, if convenient, as the product of some expressions involving $x)$.
(b) Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
2 \\
3 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
3 \\
5 \\
1 \\
2 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
2 \\
3 \\
1 \\
3 \\
1
\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}
2 \\
3 \\
1 \\
4 \\
x
\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{l}
2 \\
4 \\
1 \\
5 \\
1
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
3 \\
2 \\
2 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
5 \\
3 \\
3 \\
4
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right], \mathbf{v}_{5}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
x \\
1
\end{array}\right]
$$

i. For which values of x are the column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ constitute a basis for \mathbb{R}^{5} over the reals? Justify your answer with reference to your result in the previous part.
ii. For which values of x do the column vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ constitute a basis for \mathbb{R}^{5} over the reals? Justify your answer with reference to your result in the previous part.
3. Let a, b, c, d be numbers, none of them being equal to -1 .

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ be column vectors given by

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
-1 \\
a \\
a \\
a
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
b \\
-1 \\
b \\
b
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{c}
c \\
c \\
-1 \\
c
\end{array}\right], \quad \mathbf{u}_{4}=\left[\begin{array}{c}
d \\
d \\
d \\
-1
\end{array}\right]
$$

and $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3} \mid \mathbf{u}_{4}\right]$.
(a) Verify that

$$
\operatorname{det}(U)=m(a+n)(b+n)(c+n)(d+n)\left[p-\frac{a}{a+1}-\frac{b}{b+1}-\frac{c}{c+1}-\frac{d}{d+1}\right]
$$

Here m, n, p are some non-zero integers, whose values are independent of that of a, b, c, d. You have to give the values of m, n, p explicitly.
(b) Suppose $a=b=c=d$.

For which value(s) of a are $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ linearly dependent over the reals? Justify your answer.
4. Let a be a number, and A be the (5×5)-square matrix given by

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
a & a & a & a & 1 \\
2 & 2 & 2 & a & 1 \\
3 & 3 & 2 & a & 1 \\
4 & 3 & 2 & a & 1
\end{array}\right]
$$

(a) Show that $\operatorname{det}(A)=p(a-m)(a-n)$.

Here m, n, p are some non-zero integers, whose values are independent of that of a, and which satisfies $m<n$. You have to give the values of m, n, p explicitly.
(b) For which values of a does the homogeneous system of linear equations $\mathcal{L S}(A, \mathbf{0})$ have a non-trivial solution?
5. (a) Let A be a skew-symmetric $(n \times n)$-matrix.
i. Prove that $\operatorname{det}(A)=(-1)^{n} \operatorname{det}(A)$.
ii. Hence, or otherwise, prove that if n is odd then A is not invertible.
(b) i. Suppose a is a number. Evaluate $\operatorname{det}\left(\left[\begin{array}{cc}0 & a \\ -a & 0\end{array}\right]\right.$).
ii. Suppose $e_{1}, e_{2}, e_{3}, b_{1}, b_{2}, b_{3}$ are numbers.

Show that $\operatorname{det}\left(\left[\begin{array}{cccc}0 & e_{1} & e_{2} & e_{3} \\ -e_{1} & 0 & b_{3} & -b_{2} \\ -e_{2} & -b_{3} & 0 & b_{1} \\ -e_{3} & b_{2} & -b_{1} & 0\end{array}\right]\right)=\left(e_{1} b_{1}+p e_{2} b_{2}+q e_{3} b_{3}\right)^{m}$.
Here m, n, p are some non-zero integers, whose values are independent of that of $e_{1}, e_{2}, e_{3}, b_{1}, b_{2}, b_{3}$. You have to give the values of m, p, q explicitly.
6. In this question the symbols a, b, c, d, \cdots stand for various numbers.

Verify each of the 'identities' below. (Avoid performing 'brute-force' expansion along a row/column until you have reached some determinant with a lot of 0's.)
(a) $\operatorname{det}\left(\left[\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right]\right)=0$.
(b) $\operatorname{det}\left(\left[\begin{array}{ccc}a & b & a+b \\ b & a+b & a \\ a+b & a & b\end{array}\right]\right)=-2\left(a^{3}+b^{3}\right)$.
(c) $\operatorname{det}\left(\left[\begin{array}{cccc}a & b & c & a+b+c \\ b & c & a+b+c & a \\ c & a+b+c & a & b \\ a+b+c & a & b & c\end{array}\right]\right)=8 b(a+b+c)\left(a^{2}+c^{2}\right)$.
(d) $\operatorname{det}\left(\left[\begin{array}{lll}a^{2} & a b & b^{2} \\ b^{2} & b c & c^{2} \\ c^{2} & c a & a^{2}\end{array}\right]\right)=\left(a^{2}-b c\right)\left(b^{2}-c a\right)\left(c^{2}-a b\right)$.
(e) $\operatorname{det}\left(\left[\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b+c & c+a & a+b\end{array}\right]\right)=-(a-b)(a-c)(b-c)(a+b+c)$.
(f) $\operatorname{det}\left(\left[\begin{array}{ccc}a^{2} & b c & c^{2}+c a \\ a^{2}+a b & b^{2} & c a \\ a b & b^{2}+b c & c^{2}\end{array}\right]\right)=4 a^{2} b^{2} c^{2}$.
(g) $\operatorname{det}\left(\left[\begin{array}{ccc}(b+c)^{2} & a b & a c \\ a b & (c+a)^{2} & b c \\ a c & b c & (a+b)^{2}\end{array}\right]\right)=2 a b c(a+b+c)^{3}$.
(h) $\operatorname{det}\left(\left[\begin{array}{ccc}1 & 1 & 1 \\ b c(c-b) & c a(a-c) & a b(b-a) \\ b^{2} c & c^{2} a & a^{2} b\end{array}\right]\right)=a b c\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$.
(i) $\operatorname{det}\left(\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ a & b & c & d \\ a^{3} & b^{3} & c^{3} & d^{3} \\ a^{4} & b^{4} & c^{4} & d^{4}\end{array}\right]\right)=(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)(a b+a c+a d+b c+b d+c d)$.
(j) $\operatorname{det}\left(\left[\begin{array}{cccccc}a & 0 & 0 & 0 & 0 & b \\ 0 & a & 0 & 0 & b & 0 \\ 0 & 0 & a & b & 0 & 0 \\ 0 & 0 & b & a & 0 & 0 \\ 0 & b & 0 & 0 & a & 0 \\ b & 0 & 0 & 0 & 0 & a\end{array}\right]\right)=\left(a^{2}-b^{2}\right)^{3}$.
7. Let a, b, c, d be numbers. Suppose $a^{2}+b^{2}+c^{2}+d^{2}=1$.

Show that $\operatorname{det}\left(\left[\begin{array}{cccc}a^{2}-1 & a b & a c & a d \\ b a & b^{2}-1 & b c & b d \\ c a & c b & c^{2}-1 & c d \\ d a & d b & d c & d^{2}-1\end{array}\right]\right)=0$.
8. Let a be a number, and $A=\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1-a & 1 & 1 & 1 & 1 \\ 1 & 1 & 2-a & 1 & 1 & 1 \\ 1 & 1 & 1 & 3-a & 1 & 1 \\ 1 & 1 & 1 & 1 & 4-a & 1 \\ 1 & 1 & 1 & 1 & 1 & 5-a\end{array}\right]$.
(a) Show that A is row-equivalent to some (6×6)-upper-triangular matrix

$$
B=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & \beta_{1} & \alpha & \alpha & \alpha & \alpha \\
0 & 0 & \beta_{2} & \alpha & \alpha & \alpha \\
0 & 0 & 0 & \beta_{3} & \alpha & \alpha \\
0 & 0 & 0 & 0 & \beta_{4} & \alpha \\
0 & 0 & 0 & 0 & 0 & \beta_{5}
\end{array}\right]
$$

in which α is some number whose value is independent of that of a, and $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}$ are some numbers whose values may be dependent on that of a. You are required to give the values of $\alpha, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}$ explicitly.
(b) Hence, or otherwise, $\operatorname{det}(A)$.
(c) For which values of a is A invertible? Justify your answer.
9. Let a, b, c, d be numbers, and $A=\left[\begin{array}{ccccc}a & 0 & a & 0 & a \\ b & 0 & c & 0 & b \\ b^{2} & 0 & c^{2} & 0 & d^{2} \\ 0 & a b & 0 & b c & 0 \\ 0 & c d & 0 & a d & 0\end{array}\right]$.
(a) i. Suppose $a=0$ or $b=0$ or $d=0$. What is the value of $\operatorname{det}(A)$? Justify your answer.
ii. Suppose $b=c$ or $b=d$ or $a=c$. What is the value of $\operatorname{det}(A)$? Justify your answer.
(b) Suppose $a \neq 0$ and $b \neq 0$ and $d \neq 0$ and $b \neq c$ and $b \neq d$ and $a \neq c$.
i. Show that A is row-equivalent to

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
* & 0 & 0 & 0 & * \\
0 & 0 & 0 & * & 0 \\
0 & -1 & 0 & 1 & 0
\end{array}\right]
$$

in which the $*$'s stand for various non-zero numbers, whose values may be dependent on a, b, c, d. You must display the various entries of B explicitly.
ii. Evaluate $\operatorname{det}(B)$.

Hence, or otherwise, evaluate $\operatorname{det}(A)$.
(c) Suppose a, b, c, d are all positive real numbers

Show that A is not invertible if and only if ($a=c$ or $b=c$ or $b=d$).
10. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ be numbers, and $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5} \mid \mathbf{u}_{6}\right]$, in which

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
1+a_{1} \\
a_{1} \\
a_{1} \\
a_{1} \\
a_{1} \\
a_{1}
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
a_{2} \\
1+a_{2} \\
a_{2} \\
a_{2} \\
a_{2} \\
a_{2}
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
a_{3} \\
a_{3} \\
1+a_{3} \\
a_{3} \\
a_{3} \\
a_{3}
\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}
a_{4} \\
a_{4} \\
a_{4} \\
1+a_{4} \\
a_{4} \\
a_{4}
\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}
a_{5} \\
a_{5} \\
a_{5} \\
a_{5} \\
1+a_{5} \\
a_{5}
\end{array}\right], \mathbf{u}_{6}=\left[\begin{array}{c}
a_{6} \\
a_{6} \\
a_{6} \\
a_{6} \\
a_{6} \\
1+a_{6}
\end{array}\right] .
$$

(a) i. Show that U is row-equivalent to some (6×6)-square matrix

$$
V=\left[\begin{array}{cccccc}
\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5} & \beta_{6} \\
-\alpha & \alpha & 0 & 0 & 0 & 0 \\
-\alpha & 0 & \alpha & 0 & 0 & 0 \\
-\alpha & 0 & 0 & \alpha & 0 & 0 \\
-\alpha & 0 & 0 & 0 & \alpha & 0 \\
-\alpha & 0 & 0 & 0 & 0 & \alpha
\end{array}\right]
$$

in which α is some number whose value is independent of the values of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$, and $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}$ are some numbers whose values may be dependent of the values of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$.
You must give the values of $\alpha, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}$ explicitly.
ii. Hence, or otherwise, evaluate $\operatorname{det}(U)$. Express your answer in terms of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$.
(b) Suppose each of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ is a non-negative real number.
i. Is it true that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{u}_{6}$ are linearly independent over the reals? Justify your answer.
ii. Is it true that every vector in \mathbb{R}^{6} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{u}_{6}$ over the reals? Justify your answer.
iii. Do $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{u}_{6}$ constitute a basis for \mathbb{R}^{6} over the reals? Justify your answer.
11. (a) Let $a_{0}, a_{1}, \cdots, a_{n}, u$ be numbers, and

$$
A=\left[\begin{array}{ccccccccccc}
u & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 0 & a_{0} \\
-1 & u & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 0 & a_{1} \\
0 & -1 & u & 0 & \ddots & & & 0 & 0 & 0 & a_{2} \\
0 & 0 & -1 & u & \ddots & \ddots & & 0 & 0 & 0 & a_{3} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & & \ddots & \ddots & u & 0 & 0 & a_{n-3} \\
0 & 0 & 0 & 0 & & & \ddots & -1 & u & 0 & a_{n-2} \\
0 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & -1 & u & a_{n-1} \\
0 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 & -1 & a_{n}
\end{array}\right] .
$$

Show that $\operatorname{det}(A)=a_{0}+a_{1} u+a_{2} u^{2}+\cdots+a_{n-2} u^{n-2}+a_{n-1} u^{n-1}+a_{n} u^{n}$
(b) Let x be a number, and

$$
B=\left[\begin{array}{ccccccc}
x & 0 & 0 & 0 & 0 & 0 & -6 \\
-1 & x & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & x & 0 & 0 & 0 & 11 \\
0 & 0 & -1 & x & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & x & 0 & -6 \\
0 & 0 & 0 & 0 & -1 & x & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

For which value(s) of x is B invertible?
Remark. Take for granted the factorization $y^{3}-6 y^{2}+11 y-6=(y-1)(y-2)(y-3)$ as polynomials.
12. Let n be a positive integer, and x be a number. Define the $(n \times n)$-square matrix A by

(a) i. Show that $\operatorname{det}(A)=\operatorname{det}(B)$, in which the $(n \times n)$-square matrix B is given by

$$
B=\left[\begin{array}{c|ccccccc}
x+1 & 1 & 2 & 3 & & \cdots & & n-3 \\
n-2 & n-1 \\
\hline 1 & 0 & 0 & 0 & & \cdots & & 0 \\
0 & 0 & -n \\
1 & 0 & 0 & 0 & & \cdots & . & 0 \\
-n & 0 \\
1 & 0 & 0 & 0 & & . & \therefore & -n \\
& & & & & \therefore & \therefore & 0 \\
\vdots & \vdots & \vdots & & \therefore & \therefore & \therefore & \\
1 & 0 & 0 & -n & \therefore & & & 0 \\
1 & 0 & -n & 0 & & \cdots & 0 & 0 \\
1 & -n & 0 & 0 & & \cdots & & 0 \\
0
\end{array}\right] .
$$

ii. Hence, or otherwise, show that $\operatorname{det}(A)=(-1)^{\alpha(n)} \cdot n^{\beta(n)} \cdot\left(x+\frac{n+1}{2}\right)$, in which $\alpha(n), \beta(n)$ are some appropriate integers whose values may depend on that of n. You must give the explicit values of $\alpha(n), \beta(n)$.
(b) Let a, b be numbers, and $C=\left[\begin{array}{ccccc}a & a+b & a+2 b & a+3 b & a+4 b \\ a+b & a+2 b & a+3 b & a+4 b & a \\ a+2 b & a+3 b & a+4 b & a & a+b \\ a+3 b & a+4 b & a & a+b & a+2 b \\ a+4 b & a & a+b & a+2 b & a+3 b\end{array}\right]$.
i. Evaluate $\operatorname{det}(C)$.
ii. Suppose $b \neq 0$.

For which value(s) of a is the system $\mathcal{L S}(C, \mathbf{d})$ consistent for every column vector \mathbf{d} with five entries?
13. Let a be a number. For each positive integer n, define A_{n} to be the $(n \times n)$-square matrix given by

$$
A_{n}=\left[\begin{array}{ccccccccccc}
a & 1 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 0 & 0 \\
1 & a & 1 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & a & 1 & \ddots & & & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & a & \ddots & \ddots & & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & & \ddots & \ddots & a & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & & & \ddots & 1 & a & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 1 & a & 1 \\
0 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 1 & a
\end{array}\right]
$$

and define $x_{n}=\operatorname{det}\left(A_{n}\right)$.
(a) Evaluate x_{1}, x_{2}. Express your answers in terms of a.
(b) Show that $x_{n+1}-a x_{n}+x_{n-1}=0$ for each integer $n \geq 2$.
(c) i. Suppose $a^{2} \neq 4$. Let α, β be the roots of the quadratic polynomial $t^{2}-a t+1$. (Note that $\alpha \neq \beta$ because $a^{2} \neq 4$.)
Apply mathematical induction to show that $x_{n}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}$ for each positive integer n.
(Hint: Take ' $x_{n}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}$ and $x_{n+1}=\frac{\alpha^{n+2}-\beta^{n+2}}{\alpha-\beta}$ ' as the proposition $P(n)$ on which mathematical induction is to be applied.)
ii. Suppose $a^{2}=4$. Compute x_{n} for each positive integer n.
14. Let A, B be $(n \times n)$-square matrices. Suppose $A^{t} A=I_{n}$ and $B^{t} B=I_{n}$.
(a) Show that $A A^{t}=I_{n}$ and $B B^{t}=I_{n}$.
(b) Show that $\operatorname{det}(A) \operatorname{det}(A+B)=\operatorname{det}\left(I+A^{t} B\right)=\operatorname{det}(B) \operatorname{det}(A+B)$.
(c) What are the respective values of $(\operatorname{det}(A))^{2},(\operatorname{det}(B))^{2}$? Justify your answer.
(d) Suppose $\operatorname{det}(A B)<0$. Is $A+B$ invertible? Justify your answer.
15. (a) Let A be an $(n \times n)$-square matrix, and B be a $(p \times p)$-square matrix.
i. Suppose C is the $((n+p) \times(n+p))$-square matrix given by

$$
C=\left[\begin{array}{c|c}
A & \mathcal{O}_{n \times p} \\
\hline \mathcal{O}_{p \times n} & B
\end{array}\right] .
$$

A. Suppose B is not invertible. Show that $\operatorname{det}(C)=0$.
B. Suppose $B=I_{p}$ (instead). Show that $\operatorname{det}(C)=\operatorname{det}(A)$.
C. (Here we do not assume anything on B.)

Suppose $A=I_{n}$. Show that $\operatorname{det}(C)=\operatorname{det}(B)$.
D. (We do not assume anything on A or B.)

Hence, or otherwise, show that $\operatorname{det}(C)=\operatorname{det}(A) \operatorname{det}(B)$.
ii. Suppose D is an $(n \times p)$-square matrix, and E is the $((n+p) \times(n+p))$-square matrix given by

$$
E=\left[\begin{array}{c|c}
A & D \\
\hline \mathcal{O}_{p \times n} & B
\end{array}\right] .
$$

A. Suppose B is invertible. Show that $\operatorname{det}(E)=\operatorname{det}(A) \operatorname{det}(B)$.
B. Hence, or otherwise, show that $\operatorname{det}(E)=\operatorname{det}(A) \operatorname{det}(B)$ whether B is invertible or not.
(b) Let F, G be $(n \times n)$-square matrices. Show that

$$
\operatorname{det}\left(\left[\begin{array}{c|c}
F & G \\
\hline G & F
\end{array}\right]\right)=\operatorname{det}(F+G) \operatorname{det}(F-G)
$$

(c) Let H, J, K, L be $(n \times n)$-square matrices. Suppose H is invertible.
i. Show that there are some $(n \times n)$-square matrices P, Q, R such that

$$
\left[\begin{array}{c|c}
P & \mathcal{O}_{n \times n} \\
\hline Q & R
\end{array}\right]\left[\begin{array}{c|c}
H & J \\
\hline K & L
\end{array}\right]=\left[\begin{array}{c|c}
I_{n} & H^{-1} J \\
\hline \mathcal{O}_{n \times n} & L-K H^{-1} J
\end{array}\right]
$$

ii. Hence, or otherwise, prove the statements below:-
A. If H, K commute with each other then $\operatorname{det}\left(\left[\begin{array}{l|l}H & J \\ \hline K & L\end{array}\right]\right)=\operatorname{det}(H L-K J)$.
B. If H, J commute with each other then $\operatorname{det}\left(\left[\begin{array}{l|l}H & J \\ \hline K & L\end{array}\right]\right)=\operatorname{det}(L H-K J)$.

