5.3.1 Appendix: Co-factors, adjoints, and Cramer’s Rule.

0. The material in this appendix is supplementary.

1. Recall the notion of sub-matrices of a square matriz resultant from simultaneous row-and-column deletion.
Let A be an (n x n)-square matrix.

For each k, 0 =1,2,--- ,n, the ((n — 1) x (n — 1))-matrix of A resultant from the simultaneous deletion of its k-th
row and {-th column is called the (k,£)-th sub-matrix of A (resultant from simultaneous row-and-column
deletion). Such a matrix is denoted by A(kl|{).

Definition. (Co-factors of a square matrix.)

Let A be an (n x n)-square matrix .

For each i,j = 1,2,--- ,n, the expression (—1)"+J det(A(i|j)) is called the (i, j)-th co-factor of A, and is denoted
2. Observations on equalities related to cofactors of an arbitrary matrices.

Fix any (n x n)-square matrix A, whose (k, £)-th entry is denoted by ay, for each k, .

(a) Recall what we have learnt about expansion along arbitrary rows and arbitrary columns in A:

(1) For each i =1,2,--- ,n, the equality (¢,7) holds:—

det(4) = aix - (~1)" det(A(i|1)) +aiz - (1) det(A(i[2)) +ass - (~1)7*3det(A(i13)) + -+
Faie - (~1)H det(AGl0) + oo Fain - (1) det(A(i]n)).

(2) For each j =1,2,--- ,n, the equality (j, ) holds:—

det(A) = ay;- (—1)'7 det(A(1]j)) +ag; - (—1)*7 det(A(2]5)) +as; - (—1)>9 det(A(3[j)) + -+
+ag; - (=1)**9 det(A(k|j)) + - tan; - (—1)"1 det(A(n|j)).

In terms of co-factors, we may re-write (1), (2) as (1’), (2’) respectively:—

(1) For each i =1,2,--- ,n, the equality (¢,7) holds:—

a1 - COfil(A) + a2 - C0f12(A) + a3 - C0f13(A) + -+ aip COfiTL(A) = det(A)
(2’) For each j =1,2,--- ,n, the equality (j.j) holds:—
aij - Cofij(A) + ag;-Cofyj(A) + asj-Cofsi(A) + -+ + an;-Cofyi(A) = det(A)  —— (j.j)

(b) Fix any specific ¢ amongst 1,2,--- n.
For each k =1,2,--- ,n, whenever k # i:—
o the square matrix Ag, s1r,+or,, obtained by replacing the k-th row of A with the i-th row of A, has two
identical rows at different positions, namely its i-th row and its k-th row,
and therefore det(Ag, —»1r,+0r,) = 0.
Expanding det(Ag, —»1r;+0r, ) along its k-th row, we obtain the equality (i.k):—

a;1 - Cofp1(A) 4+ ajp- Cofpa(A) +  aiz-Cofiz(A) + -+ +  Gin - Cofpn(A) = 0

(¢) Fix any specific j amongst 1,2,--- ,n.
For each £ =1,2,---  n, whenever ¢ # j:—
e the square matrix Ag, 1¢;+0c,, obtained by replacing the /-th column of A with the j-th column of A,
has two identical columns at different positions, namely its j-th column and its /-th column,
and therefore det(Ac,—1c;400,) = 0.
Expanding det(Ac,s1¢,+0c,) along its (-th column, we obtain the equality (j.£):—

ayj - COflg(A) +  ag;- COfgg(A) + asg;- COfg@(A) + 0+ COfng(A) =0 —_— (jé)



(d)

For each k = 1,2,--- ,n, we have n simultaneous equalities concerned with column vector

Cofkl (A)
Cofkg (A)

)

Cofk:n(A)
namely the equalities (1.k), (2.k),---,((k — 1).k), (k.k), (k+1).k)---, (n.k)—

ayy - COfkl(A)
asy COfkl(A)

ai - COfkg (A)
aso COka (A)

Ain - COfkn(A) =
A2p * COfkn(A)

|
o

- + o+
- + o+

Il
o

akp—1,1" Cofkl(A) + ak—1,2 ° COka(A) + - + Qr—1,n ° COfkn(A) =0
g1 - COfkl(A) + a2 - COfkg(A) + - 4+ Ak,p COfkn(A) = det(A)
apt1,1 - Cofpi(A) +  apyr2-Cofpa(A) + -+ +  apy1,n - Cofpn(A) =

|
o

Apl * Cofkl(A) + ana - Cofpo (A) + -+ Apn * Cof;m(A) = 0

Applying the definitions for matrix product and matrix equality, we can re-formulate the

Cofy1 (A)

Cofz(A) -
. =det(A)e, .

Cofpn (A)

Further applying the definition for matrix product, we obtain the equalities
AAd(A) = | det(A)el™ | det(A)el” | --- | det(A)el” } = det(A)1,,

in which Ad(A) stands for the matrix given by

COfll(A) COle(A) s COfnl(A)
of12(A ofya (A of2(A
aday = | CRld) | Coml) Cofrald)
Cofi(A) | Cofon(A) | -+ | Cofpn(A)

obtained when we placed side-by-side, from left to right, the column vectors

COfll(A) COle(A) Cofnl(A)
COflg(A) C0f22 (A) Cofng (A)
Cofin(A) Cofan(A) Cofn (A)

to form an (n x n)-square matrix.

The matrix Ad(A) is called the adjoint of the square matrix A.

For each 7 =1,2,--- ,n, we have n simultaneous equalities concerned with column vector

alj
agj

anj

namely the equalities (5.1), (4.2),---,(J.( = 1)), (G.9), G- G+ 1)) -+, (Gn):—

COfll(A) . alj + COle(A) . agj + - + COfnl(A) . an]' =0
COflg(A) - a1y =+ Cofag (A) - Q2j + e 4+ Cof,o (A) “Qpj = 0
C0f17j_1(14) -ay; + C0f27j_1(A) sag; + + COfmj_l(A) cQpj = 0
COflj (A) sy + COfQj (A) + a2j + + COfnj (A) cQpj = det(A)
COij+1(A) s ayj + COfQ_]j+1(A) +a2j + + COfn,j+1(A) cQpj = 0
COfln(A) - a1y =+ COan(A) - Q2j + e 4+ Cofpn (A) “Qpj = 0

— (n.k)

above as:—



Applying the definitions for matrix product and matrix equality, we can re-formulate the above as:—

aij
a2j

Ad(A) | | = det(A)el™.
Cl;lj

Further applying the definition for matrix product, we obtain the equalities
Ad(A) A= | det(A)el™ | det(A)el |- | det(A)e ] = det(A)1,

3. The above observations are now summarized in the form of a theoretical result:—
Theorem (8). (Product of a matrix with its adjoint.)
Suppose A is an n X n-square matrix.
Then the equalities A Ad(A) = det(A)I, and Ad(A) A = det(A)I, holds.
Remark on terminology. As stated in the observations above, the (n X n)-square matrix whose (¢, j)-th entry
is given by the (j,7)-th cofactor Cof;;(A) of the matrix A is called the adjoint of the matrix A.

Written out explicitly in terms of the sub-matrices of A obtained by simultaneous deletions of various rows and
columns, Ad(A) is explicitly given by the equality

(=Dl det(A(1]1)) (=1 F2det(A(2]1)) (=1)**3det(A(3[1)) -+ (=1 det(A(n|1))
(—1)2T1det(A(1]2)) (=1)*T2det(A(2]2)) (—1)*T3det(A(3]2)) - (—1)>T det(A(n|2))
Ad(A) = | (=1)*F1det(A(1]3))  (=1)7F2det(A(2]3))  (=1)°"" det(A(3]3) (=1)>*" det(A(n|3))

——

(—1)"™ 1 det(A(1|n))  (=1)"2det(A(2[n)) (—1)"*+3det(A(3n)) --- (—1)"+" det(A(n|n))

4. Example (6). (Adjoints of square matrices of small sizes.)

_[an a2
(a) Suppose A = [ 431 (2 ] Then

Ad(A) = [ (1)1 det(A(1[1))  (—=1)"+2 det(A(2[1)) } — [ agy  —ai

(—1)>1 det(A(1]2)) (~1)1 det(A([2)) | T |~z an

a1l a2 ais
a21 Qag22 a23
a3 asz a33

(b) Suppose A = . Then

(=D)L det(A(1]1)) (=112 det(A(2]1)) (—1)3det(A(3]1))
[<1>2+1det<A<1|2>> (—1)%*2 det(A(2]2)) <1>2+3det<A<32>>]
(=131 det(A(1)3)) (=1)>F2det(A(2]3)) (—1)3F3det(A(3]3))
[ (22033 — 423032 —a12a33 + a32a13 G12023 — 22013

—a21033 + a31023  G11033 — (31013  —0a11023 + 421013
(21032 — 431622  —011032 + 4310412 (411022 — 421012

5. Theorem (9). (Invertibility of square matrix and its adjoint.)
Suppose A be an (n x n)-square matrix. Then the statements (1), (2) are logically equivalent:—
(1) A is invertible.
(2) Ad(A) is invertible.

1
Moreover, if one of (1), (2) holds (so that both hold), then by A~! = det(4) Ad(A).
e

Proof of Theorem (9). Exercise. (Make good use of the logical equivalence between the statements ‘A is
invertible’ and ‘det(A) # 0.)

6. Now recall the result labelled Theorem (%) below, about systems of linear equations whose coefficient matrices are
invertible:—

Theorem (x).
Let A be a (n x n)-square matrix.
Suppose A is invertible.

Then, for any column vector b with n entries, the system LS(A, b) has a unique solution, namely A='b.



7. Theorem (9) combines with Theorem (x) to give a result known as Cramer’s Rule, which is one of the earliest
discovered result in linear algebra.

Theorem (10). (Cramer’s Rule.)
Let A be an (n x n)-square matrix.

Suppose A is invertible.

Then, for any column vector b with n entries, the system LS(A, b) has a unique solution, namely Ad(A)b.

1
det(A)

Remark. The essence of this result is in the ‘formula’ for the matrix inverse A~! of the invertible matrix A that
reads:
1
e — v, |7/}
det(A) (4)

For this reason, we may also refer to this equality as Cramer’s Rule.



