4.8.1 Answers to Exercise.

1. (a) Every basis for \mathcal{W} contains three column vectors belonging to \mathbb{R}^{5}. But there are fewer than three column vectors in the list $\mathbf{v}_{1}, \mathbf{v}_{2}$.
(b) Every basis for \mathcal{W} contains three column vectors belonging to \mathbb{R}^{5}. But there are more than three column vectors in the list $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$.
(c) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ constitute a basis for \mathcal{W} over the reals. Since $\mathbf{v}_{4} \in \mathcal{W}, \mathbf{v}_{4}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ over the reals, with respect to real scalars say, $\alpha_{1}, \alpha_{2}, \alpha_{3}$.
Write $\mathbf{t}=\left[\begin{array}{c}-\alpha_{1} \\ -\alpha_{2} \\ -\alpha_{3} \\ 1\end{array}\right]$. Note that \mathbf{t} is a non-zero column vector belonging to \mathbb{R}^{4}.
We have $V \mathbf{t}=-\alpha_{1} \mathbf{v}_{1}-\alpha_{2} \mathbf{v}_{2}-\alpha_{3} \mathbf{v}_{3}+1 \cdot \mathbf{v}_{4}=\mathbf{0}_{5}$.
Hence $\mathbf{t} \in \mathcal{N}(V)$.
2. (a)
(b)
(c) Comment.

It suffices to verify the statement ($\mathfrak{\square}$): For any $\mathbf{u} \in \mathbb{R}^{6}$, for any $\alpha \in \mathbb{R}$, if $\mathbf{u} \in \mathcal{W}$, then $\alpha \mathbf{u} \in \mathcal{W}$.
3. \qquad
4. (a) i. True.
ii. True.
iii. True.
iv. True.
v. False.
(b) i.
ii. Take $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \alpha=-1$. Then $\mathbf{u} \in S$ and $\alpha \mathbf{u} \notin S$.
iii. No. Reason: the statement 'For any $\mathbf{u} \in \mathbb{R}^{3}$, for any $\alpha \in \mathbb{R}$, if $\mathbf{u} \in S$ then $\alpha \mathbf{u} \in S$ ' fails to hold.
5. (a) i. True.
ii. False.
iii. False.
iv. True.
v. True.
(b) i.
ii. Take $\mathbf{u}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$. Then $\mathbf{u} \in S$ and $\mathbf{v} \in S$ and $\mathbf{u}+\mathbf{v} \notin S$.
iii. No. The statement 'For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$, if $\mathbf{u} \in S$ and $\mathbf{v} \in S$ then $\mathbf{u}+\mathbf{v} \in S$ ' fails to hold.
6. (a) -
(b) i. -
ii. Yes.
iii. No.
7. (a)
(b) No.
8. \qquad
9. (a) No.
(b) Yes.

For any $\mathbf{v} \in \mathbb{R}^{3}$, if $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ then

$$
\mathbf{v}=\frac{3 v_{1}+v_{3}}{2} \mathbf{u}_{1}+\frac{-13 v_{1}+2 v_{2}-5 v_{3}}{4} \mathbf{u}_{2}+\frac{17 v_{1}-2 v_{2}+5 v_{3}}{4} \mathbf{u}_{3}
$$

(c) No.
(d) Yes.

For any $\mathbf{v} \in \mathbb{R}^{4}$, if $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right]$ then

$$
\mathbf{v}=\frac{-4 v_{1}+v_{2}+2 v_{3}+v_{4}}{5} \mathbf{u}_{1}+\frac{-3 v_{1}-8 v_{2}+4 v_{3}+2 v_{4}}{5} \mathbf{u}_{2}+\frac{3 v_{1}+3 v_{2}+v_{3}-2 v_{4}}{5} \mathbf{u}_{3}+\frac{v_{1}+v_{2}-3 v_{3}+v_{4}}{5} \mathbf{u}_{4}
$$

(e) No.
(f) Yes.

For any $\mathbf{v} \in \mathbb{R}^{5}$, if $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array}\right]$ then

$$
\begin{aligned}
\mathbf{v}= & \frac{v_{1}+v_{2}-v_{3}+v_{4}-v_{5}}{2} \mathbf{u}_{1}+\frac{-v_{1}+v_{2}+v_{3}-v_{4}+v_{5}}{2} \mathbf{u}_{2}+\frac{v_{1}-v_{2}+v_{3}+v_{4}-v_{5}}{2} \mathbf{u}_{3} \\
& +\frac{-v_{1}+v_{2}-v_{3}+v_{4}+v_{5}}{2} \mathbf{u}_{4}+\frac{v_{1}-v_{2}+v_{3}-v_{4}+v_{5}}{2} \mathbf{u}_{5}
\end{aligned}
$$

(g) No.
10. (In each part, there are many correct choices for the column vectors in the basis concerned.)
(a) $\mathbf{u}_{1}, \mathbf{u}_{2}$ constitute a basis for \mathcal{W}.
$\operatorname{dim}(\mathcal{W})=2$.
$\mathbf{u}_{3}=\mathbf{u}_{1}+\mathbf{u}_{2}, \mathbf{u}_{4}=-4 \mathbf{u}_{1}+3 \mathbf{u}_{2}, \mathbf{u}_{5}=4 \mathbf{u}_{1}-\mathbf{u}_{2}$.
Reason:

$$
\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5}\right] \longrightarrow \cdots \cdots \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 1 & -4 & 4 \\
0 & 1 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}$ constitute a basis for \mathcal{W}.
$\operatorname{dim}(\mathcal{W})=3$.
$\mathbf{u}_{3}=2 \mathbf{u}_{1}+3 \mathbf{u}_{2}, \mathbf{u}_{5}=\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{4}$.
Reason:

$$
\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5}\right] \longrightarrow \cdots \cdots \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(c) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}$ constitute a basis for \mathcal{W}.
$\operatorname{dim}(\mathcal{W})=3$.
$\mathbf{u}_{3}=\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{u}_{5}=\mathbf{u}_{1}+3 \mathbf{u}_{2}+2 \mathbf{u}_{4}$.
Reason:

$$
\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5}\right] \longrightarrow \cdots \cdots \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(d) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ constitute a basis for \mathcal{W}.
$\operatorname{dim}(\mathcal{W})=3$.
$\mathbf{u}_{4}=3 \mathbf{u}_{1}-\mathbf{u}_{2}+\mathbf{u}_{3}, \mathbf{u}_{5}=2 \mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{4}$.
Reason:

$$
\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5}\right] \longrightarrow \cdots \cdots \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & 2 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(e) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}$ constitute a basis for \mathcal{W}.
$\operatorname{dim}(\mathcal{W})=3$.
$\mathbf{u}_{3}=2 \mathbf{u}_{1}+3 \mathbf{u}_{2}, \mathbf{u}_{5}=\mathbf{u}_{1}-\mathbf{u}_{2}+\mathbf{u}_{4}, \mathbf{u}_{6}=\mathbf{u}_{2}+2 \mathbf{u}_{4}$.
Reason:

$$
\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \mathbf{u}_{3}\left|\mathbf{u}_{4}\right| \mathbf{u}_{5} \mid \mathbf{u}_{6}\right] \longrightarrow \cdots \cdots \longrightarrow\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 \\
0 & 1 & 3 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

11. (a) $3 \mathbf{u}$ is a solution of $\mathcal{L S}(A, 3 \mathbf{b})$.
(b) $-3 \mathbf{u}+\mathbf{v}$ belongs to $\mathcal{N}(A)$.

Alternative answer. Any non-zero scalar multiple of $-3 \mathbf{u}+\mathbf{v}$ is equally correct as an answer.
(c) (I): -3 . (II): 1 .

Alternative answer. (I): $-3 c$. (II): c.
Here c stands for any non-zero real number.
(d) $\kappa=-3$ and $\lambda=-4$.
12. (a) 1-st, 2-nd, 4-th, 7-th columns.
(b) 4 .
(c) $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}, \mathbf{a}_{7}$.
(d) i. $\operatorname{dim}(\mathcal{C}(A))=4$.
ii. $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}, \mathbf{a}_{7}$.
iii. $C=\left[\begin{array}{cccccccc}1 & 0 & -1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & -1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
$\mathbf{a}_{8}=-\mathbf{a}_{1}+5 \mathbf{a}_{2}+2 \mathbf{a}_{4}+3 \mathbf{a}_{7}$
(e) i. $\operatorname{dim}(\mathcal{N}(A))=4$.
ii. $\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -5 \\ 0 \\ -2 \\ 0 \\ 0 \\ -3 \\ 1\end{array}\right]$.
(f) i. $\operatorname{dim}(\mathcal{R}(A))=4$.
ii. $\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 3 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 3\end{array}\right]$.
iii. $\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 0 \\ 2 \\ 3 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 2 \\ 2 \\ -1 \\ 8 \\ -1 \\ 6\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 3 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 3\end{array}\right]$.
iv. $\operatorname{dim}\left(\mathcal{N}\left(A^{t}\right)\right)=2$.
13. (a) B is a reduced row-echelon form.

The pivot columns of B are the first, second, fourth, seventh, eighth columns.
(b) i. $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}, \mathbf{u}_{7}, \mathbf{u}_{8}$ constitute a basis for $\mathcal{C}(A)$.

Remark. There is no alternative answer.
ii. $\operatorname{dim}(\mathcal{C}(A))=5$.
(c) i. $\mathcal{R}(B), \mathcal{C}\left(B^{t}\right)$ are equal to $\mathcal{R}(A)$.
ii. A basis for $\mathcal{R}(A)$ is given by

$$
\left[\begin{array}{c}
1 \\
0 \\
c_{13} \\
0 \\
c_{15} \\
c_{16} \\
0 \\
0 \\
c_{19}
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
1 \\
c_{23} \\
0 \\
c_{25} \\
c_{26} \\
0 \\
0 \\
c_{29}
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
c_{35} \\
c_{36} \\
0 \\
0 \\
c_{39}
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
c_{49}
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
c_{59}
\end{array}\right]
$$

iii. $\operatorname{dim}(\mathcal{R}(A))=5$.
(d) i. $\operatorname{dim}\left(\mathcal{N}\left(A^{t}\right)\right)+\operatorname{dim}\left(\mathcal{C}\left(A^{t}\right)\right)=6$.
ii. $\operatorname{dim}\left(\mathcal{N}\left(A^{t}\right)\right)=1$.
14. (a) 1-st, 4 -th columns in C are pivot columns.

3 -rd, 5 -th columns in C are free columns.
$a_{12}=1, a_{22}=1, a_{32}=2, a_{42}=-1, a_{14}=0, a_{34}=1, a_{44}=4$.
$c_{11}=0, c_{21}=0, c_{31}=0, c_{12}=0, c_{22}=1, c_{32}=0, c_{14}=0, c_{24}=0, c_{33}=0, c_{34}=1, c_{35}=1, c_{16}=0, c_{26}=$ $2, c_{36}-1, c_{46}=0$

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 3 & 0 & 2 & 2 \\
0 & 1 & 2 & 1 & 2 & 1 \\
-1 & 2 & 3 & 1 & 2 & 3 \\
2 & -1 & 0 & 4 & 5 & -6
\end{array}\right], C=\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) $\operatorname{dim}(\mathcal{C}(A))=3$.
$\operatorname{dim}(\mathcal{N}(A))=3$.
(c) $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}$ constitute a basis for $\mathcal{C}(A)$.
$\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{6}$ consitute a basis for $\mathcal{C}(A)$.
(d) $\operatorname{dim}(\mathcal{R}(A))=3$
$\mathbf{d}_{1}{ }^{t}, \mathbf{d}_{2}{ }^{t}, \mathbf{d}_{3}{ }^{t}$ constitute a basis for $\mathcal{R}(A)$.
(e) Note that $\mathcal{N}\left(A^{t}\right)$ is of dimension 1, according to the Rank-nullity formulae.

It follows that a basis for $\mathcal{N}\left(A^{t}\right)$ is constituted by exactly one non-zero column vector, say, \mathbf{v}, belonging to \mathbb{R}^{4}. Hence any non-trivial solution of the homogeneous system $\mathcal{L S}\left(A^{t}, \mathbf{0}_{6}\right)$ is a scalar multiple of \mathbf{v}. Then any two non-trivial solutions of the homogeneous system $\mathcal{L S}\left(A^{t}, \mathbf{0}_{6}\right)$ are scalar multiples of each other.
15. (a) $\operatorname{dim}(\mathcal{N}(A))=3$.
(b) Yes. Reason:

- $\operatorname{dim}(\mathcal{N}(A))=3$.
- $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3} \in \mathcal{N}(A)$.
- $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}$ are linearly independent.

16. (a)
(b) i. $\alpha \neq 1$ if and only if $\mathcal{N}\left(A_{\alpha}\right) \neq\left\{\mathbf{0}_{4}\right\}$.
ii. $\beta=1$ if and only if $\left(\left(S_{\beta ; c_{1}, c_{2}, c_{3}, c_{4}}\right)\right.$ is inconsistent for some values of $\left.c_{1}, c_{2}, c_{3}, c_{4}\right)$.
17. (a) -
(b) F can be taken as I_{2}.
(c) G can be taken to be $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
18. \qquad
19. (a)
(b) $\operatorname{dim}\left(\mathcal{N}\left(3 A\left(B^{2}-3 B\right) C\right)+\operatorname{dim}\left(\mathcal{C}\left(2 A\left(B^{2}-3 B\right) C\right)\right)=9\right.$.

Comment.
Apply the Rank-nullity Formulae. But first you have to verify that $\mathcal{C}\left(2 A\left(B^{2}-3 B\right) C\right)=\mathcal{C}\left(A\left(B^{2}-3 B\right) C\right)$ as sets.
20. Remark. According to part (b), we may conclude that $\mathcal{V}=\mathcal{W}$ as sets. Overall, the result described by the entire question is an illustration on what is usually known as 'Replacement Theorem' in linear algebra.
21. (a) $k=0$.
(b) -
(c) i.
ii.
iii.
(d) Yes.

Comment.
We have already shown that \mathbf{x} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{3} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}$.
It will turn out that \mathbf{y} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$,
It will also turn out that \mathbf{v}_{4} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{y}$, and hence \mathbf{v}_{4} is also a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}, \mathbf{y}$,
22. (a) Yes.
(b) Yes.
(c) Yes.
(d) Yes.
23.
24. True.
25. (a)
(b) True.
26. True.

Comment.

Start by picking some basis for \mathcal{U} over the reals, say, $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, and picking some basis for \mathcal{V} over the reals, say, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
27.
28. (a)
(b) A counter-example is provided by the choice ' $A=I_{2}$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ '.
(c) i. True.
ii. True.
iii. False. A counter-example is provided by the choice ' $A=B=\mathcal{O}_{2 \times 2}$ '. iv. True.
29. (a)
(b)
(c)
(d) A possible choice is given by $D=\left[\begin{array}{c|c}I_{2} & \mathbf{0}_{4}{ }^{t} \\ \hline \mathbf{0}_{4} & J\end{array}\right]$, in which $J=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
30. (a)
(b)

