4.8.1 Answers to Exercise.

- 1. (a) Every basis for \mathcal{W} contains three column vectors belonging to \mathbb{R}^5 . But there are fewer than three column vectors in the list $\mathbf{v}_1, \mathbf{v}_2$.
 - (b) Every basis for W contains three column vectors belonging to \mathbb{R}^5 . But there are more than three column vectors in the list $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$.
 - (c) Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ constitute a basis for \mathcal{W} over the reals. Since $\mathbf{v}_4 \in \mathcal{W}$, \mathbf{v}_4 is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ over the reals, with respect to real scalars say, $\alpha_1, \alpha_2, \alpha_3$.

Write
$$\mathbf{t} = \begin{bmatrix} -\alpha_1 \\ -\alpha_2 \\ -\alpha_3 \\ 1 \end{bmatrix}$$
. Note that \mathbf{t} is a non-zero column vector belonging to \mathbb{R}^4 .

We have $V \mathbf{t} = -\alpha_1 \mathbf{v}_1 - \alpha_2 \mathbf{v}_2 - \alpha_3 \mathbf{v}_3 + 1 \cdot \mathbf{v}_4 = \mathbf{0}_5$. Hence $\mathbf{t} \in \mathcal{N}(V)$.

2. (a) —

- (b) —
- (c) Comment.

It suffices to verify the statement (\natural): For any $\mathbf{u} \in \mathbb{R}^6$, for any $\alpha \in \mathbb{R}$, if $\mathbf{u} \in \mathcal{W}$, then $\alpha \mathbf{u} \in \mathcal{W}$.

3. -

(b)

4. (a) i. True.

- ii. True.
- iii. True.
- iv. True.
- v. False.

ii. Take
$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\alpha = -1$. Then $\mathbf{u} \in S$ and $\alpha \mathbf{u} \notin S$.

iii. No. Reason: the statement 'For any $\mathbf{u} \in \mathbb{R}^3$, for any $\alpha \in \mathbb{R}$, if $\mathbf{u} \in S$ then $\alpha \mathbf{u} \in S$ ' fails to hold.

- ii. False.
- iii. False.
- iv. True.
- v. True.
- (b) i. —

ii. Take
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$. Then $\mathbf{u} \in S$ and $\mathbf{v} \in S$ and $\mathbf{u} + \mathbf{v} \notin S$.

iii. No. The statement 'For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, if $\mathbf{u} \in S$ and $\mathbf{v} \in S$ then $\mathbf{u} + \mathbf{v} \in S$ ' fails to hold.

(b) i. —

- ii. Yes.
- iii. No.

7. (a) —

(b) No.

8. —

- 9. (a) No.
 - (b) Yes.

For any
$$\mathbf{v} \in \mathbb{R}^3$$
, if $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ then
$$\mathbf{v} = \frac{3v_1 + v_3}{2}\mathbf{u}_1 + \frac{-13v_1 + 2v_2 - 5v_3}{4}\mathbf{u}_2 + \frac{17v_1 - 2v_2 + 5v_3}{4}\mathbf{u}_3$$

(c) No.

(d) Yes.

For any
$$\mathbf{v} \in \mathbb{R}^4$$
, if $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$ then
$$\mathbf{v} = \frac{-4v_1 + v_2 + 2v_3 + v_4}{5} \mathbf{u}_1 + \frac{-3v_1 - 8v_2 + 4v_3 + 2v_4}{5} \mathbf{u}_2 + \frac{3v_1 + 3v_2 + v_3 - 2v_4}{5} \mathbf{u}_3 + \frac{v_1 + v_2 - 3v_3 + v_4}{5} \mathbf{u}_4$$

(e) No.

(f) Yes.

For any
$$\mathbf{v} \in \mathbb{R}^5$$
, if $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix}$ then
$$\mathbf{v} = \frac{v_1 + v_2 - v_3 + v_4 - v_5}{2} \mathbf{u}_1 + \frac{-v_1 + v_2 + v_3 - v_4 + v_5}{2} \mathbf{u}_2 + \frac{v_1 - v_2 + v_3 + v_4 - v_5}{2} \mathbf{u}_3 + \frac{-v_1 + v_2 - v_3 + v_4 + v_5}{2} \mathbf{u}_4 + \frac{v_1 - v_2 + v_3 - v_4 + v_5}{2} \mathbf{u}_5$$

(g) No.

10. (In each part, there are many correct choices for the column vectors in the basis concerned.)

(a) $\mathbf{u}_{1}, \mathbf{u}_{2}$ constitute a basis for \mathcal{W} . $\dim(\mathcal{W}) = 2.$ $\mathbf{u}_{3} = \mathbf{u}_{1} + \mathbf{u}_{2}, \mathbf{u}_{4} = -4\mathbf{u}_{1} + 3\mathbf{u}_{2}, \mathbf{u}_{5} = 4\mathbf{u}_{1} - \mathbf{u}_{2}.$ Reason: $\begin{bmatrix} \mathbf{u}_{1} \mid \mathbf{u}_{2} \mid \mathbf{u}_{3} \mid \mathbf{u}_{4} \mid \mathbf{u}_{5} \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 1 & -4 & 4 \\ 0 & 1 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ (b) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}$ constitute a basis for \mathcal{W} . $\dim(\mathcal{W}) = 3.$ $\mathbf{u}_{3} = 2\mathbf{u}_{1} + 3\mathbf{u}_{2}, \mathbf{u}_{5} = \mathbf{u}_{1} + \mathbf{u}_{2} + \mathbf{u}_{4}.$ Reason: $\begin{bmatrix} \mathbf{u}_{1} \mid \mathbf{u}_{2} \mid \mathbf{u}_{3} \mid \mathbf{u}_{4} \mid \mathbf{u}_{5} \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ (c) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{4}$ constitute a basis for \mathcal{W} . $\dim(\mathcal{W}) = 3.$

 $\begin{aligned} \dim(\mathcal{W}) &= 3. \\ \mathbf{u}_3 &= \mathbf{u}_1 - \mathbf{u}_2, \, \mathbf{u}_5 &= \mathbf{u}_1 + 3\mathbf{u}_2 + 2\mathbf{u}_4. \\ \text{Reason:} \\ \begin{bmatrix} \mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3 \mid \mathbf{u}_4 \mid \mathbf{u}_5 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{aligned}$

(d) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for \mathcal{W} . $\dim(\mathcal{W}) = 3.$ $\mathbf{u}_4 = 3\mathbf{u}_1 - \mathbf{u}_2 + \mathbf{u}_3, \, \mathbf{u}_5 = 2\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_4.$ Reason:

$$\begin{bmatrix} \mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3 \mid \mathbf{u}_4 \mid \mathbf{u}_5 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 3 & 2 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(e) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_4$ constitute a basis for \mathcal{W} .

dim(W) = 3. $\mathbf{u}_3 = 2\mathbf{u}_1 + 3\mathbf{u}_2, \ \mathbf{u}_5 = \mathbf{u}_1 - \mathbf{u}_2 + \mathbf{u}_4, \ \mathbf{u}_6 = \mathbf{u}_2 + 2\mathbf{u}_4.$ Reason:

	1	0	2	0	1	0
	0	1	3	0	$^{-1}$	1
$\begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 & \mathbf{u}_5 & \mathbf{u}_6 \end{bmatrix} \longrightarrow \cdots \cdots \longrightarrow \begin{bmatrix} \mathbf{u}_6 & \mathbf{u}_6 & \mathbf{u}_6 \end{bmatrix}$	0	0	0	1	1	2
	0	0	0	0	0	0

11. (a) $3\mathbf{u}$ is a solution of $\mathcal{LS}(A, 3\mathbf{b})$.

(b) $-3\mathbf{u} + \mathbf{v}$ belongs to $\mathcal{N}(A)$.

Alternative answer. Any non-zero scalar multiple of $-3\mathbf{u} + \mathbf{v}$ is equally correct as an answer.

(c) (I): -3. (II): 1.
 Alternative answer. (I): -3c. (II): c.

Here c stands for any non-zero real number.

- (d) $\kappa = -3$ and $\lambda = -4$.
- 12. (a) 1-st, 2-nd, 4-th, 7-th columns.
 - (b) 4.
 - (c) $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4, \mathbf{a}_7.$
 - (d) i. dim($\mathcal{C}(A)$) = 4.
 - ii. a_1, a_2, a_4, a_7 .

$$\text{iii.} \quad \begin{bmatrix} 1\\1\\1\\0\\2\\3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\2\\-1\\8\\-1\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\-1\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\-1\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0\\1\\3 \end{bmatrix} \\ \text{iv.} \ \dim(\mathcal{N}(A^t)) = 2.$$

13. (a) B is a reduced row-echelon form.

The pivot columns of B are the first, second, fourth, seventh, eighth columns.

- (b) i. u₁, u₂, u₄, u₇, u₈ constitute a basis for C(A). Remark. There is no alternative answer.
 ii. dim(C(A)) = 5.
- (c) i. $\mathcal{R}(B)$, $\mathcal{C}(B^t)$ are equal to $\mathcal{R}(A)$.
 - ii. A basis for $\mathcal{R}(A)$ is given by

1		0		0		0		0	
0		1		0		0		0	
$ c_{13} $		c_{23}		0		0		0	
0		0		1		0		0	
c_{15}	,	c_{25}	,	c_{35}	,	0	,	0	
$ c_{16} $		c_{26}		c_{36}		0		0	
0		0		0		1		0	
0		0		0		0		1	
c_{19}		c_{29}		c_{39}		c_{49}		c_{59}	

iii. dim $(\mathcal{R}(A)) = 5$.

- (d) i. $\dim(\mathcal{N}(A^t)) + \dim(\mathcal{C}(A^t)) = 6.$ ii. $\dim(\mathcal{N}(A^t)) = 1.$
- 14. (a) 1-st, 4-th columns in C are pivot columns.

3-rd, 5-th columns in C are free columns.

 $\begin{array}{l} a_{12}=1, a_{22}=1, a_{32}=2, a_{42}=-1, a_{14}=0, a_{34}=1, a_{44}=4. \\ c_{11}=0, c_{21}=0, c_{31}=0, c_{12}=0, c_{22}=1, c_{32}=0, c_{14}=0, c_{24}=0, c_{33}=0, c_{34}=1, c_{35}=1, c_{16}=0, c_{26}=2, c_{36}-1, c_{46}=0 \end{array}$

1	1	3	0	2	2		1	0	1	0	1	0
0	1	2	1	2	1	a	0	1	2	0	1	2
-1	2	3	1	2	3	, C =	0	0	0	1	1	-1
2	-1	0	4	5	-6		0	0	0	0	0	0
	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 2 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -1 & 2 & 3 & 1 & 2 & 3 \\ 2 & -1 & 0 & 4 & 5 & -6 \end{bmatrix}, C =$	$\begin{bmatrix} 1 & 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -1 & 2 & 3 & 1 & 2 & 3 \\ 2 & -1 & 0 & 4 & 5 & -6 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -1 & 2 & 3 & 1 & 2 & 3 \\ 2 & -1 & 0 & 4 & 5 & -6 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -1 & 2 & 3 & 1 & 2 & 3 \\ 2 & -1 & 0 & 4 & 5 & -6 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -1 & 2 & 3 & 1 & 2 & 3 \\ 2 & -1 & 0 & 4 & 5 & -6 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 3 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -1 & 2 & 3 & 1 & 2 & 3 \\ 2 & -1 & 0 & 4 & 5 & -6 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$				

- (b) $\dim(\mathcal{C}(A)) = 3.$ $\dim(\mathcal{N}(A)) = 3.$
- (c) $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4$ constitute a basis for $\mathcal{C}(A)$. $\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_6$ consitute a basis for $\mathcal{C}(A)$.
- (d) $\dim(\mathcal{R}(A)) = 3$ $\mathbf{d}_1^t, \mathbf{d}_2^t, \mathbf{d}_3^t$ constitute a basis for $\mathcal{R}(A)$.
- (e) Note that $\mathcal{N}(A^t)$ is of dimension 1, according to the Rank-nullity formulae. It follows that a basis for $\mathcal{N}(A^t)$ is constituted by exactly one non-zero column vector, say, \mathbf{v} , belonging to \mathbb{R}^4 . Hence any non-trivial solution of the homogeneous system $\mathcal{LS}(A^t, \mathbf{0}_6)$ is a scalar multiple of \mathbf{v} . Then any two non-trivial solutions of the homogeneous system $\mathcal{LS}(A^t, \mathbf{0}_6)$ are scalar multiples of each other.
- 15. (a) $\dim(\mathcal{N}(A)) = 3$.

- (b) Yes. Reason:
 - $\dim(\mathcal{N}(A)) = 3.$
 - $\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3 \in \mathcal{N}(A).$
 - $\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3$ are linearly independent.
- 16. (a)
 - (b) i. $\alpha \neq 1$ if and only if $\mathcal{N}(A_{\alpha}) \neq \{\mathbf{0}_4\}$.

ii. $\beta = 1$ if and only if $((S_{\beta;c_1,c_2,c_3,c_4})$ is inconsistent for some values of $c_1, c_2, c_3, c_4)$.

- 17. (a)
 - (b) F can be taken as I_2 .

	0	1	0	0	1
(c) G can be taken to be	0	0	1	0	
	0	0	0	1	
	0	0	0	0	

18. ——

- 19. (a)
 - (b) $\dim(\mathcal{N}(3A(B^2 3B)C) + \dim(\mathcal{C}(2A(B^2 3B)C)) = 9.$ Comment.

Apply the Rank-nullity Formulae. But first you have to verify that $\mathcal{C}(2A(B^2 - 3B)C) = \mathcal{C}(A(B^2 - 3B)C)$ as sets.

- 20. **Remark**. According to part (b), we may conclude that $\mathcal{V} = \mathcal{W}$ as sets. Overall, the result described by the entire question is an illustration on what is usually known as 'Replacement Theorem' in linear algebra.
- 21. (a) k = 0.
 - (b) —
 - (c) i.
 - ii.
 - iii. —
 - (d) Yes.
 - Comment.

We have already shown that \mathbf{x} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, and \mathbf{v}_3 is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{x}$. It will turn out that \mathbf{y} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$,

It will also turn out that \mathbf{v}_4 is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{y}$, and hence \mathbf{v}_4 is also a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{x}, \mathbf{y}$,

- 22. (a) Yes.
 - (b) Yes.
 - (c) Yes.
 - (d) Yes.
- 23. —
- 24. True.
- 25. (a)
 - (b) True.
- 26. True.

Comment.

Start by picking some basis for \mathcal{U} over the reals, say, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, and picking some basis for \mathcal{V} over the reals, say, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

27. —

- 28. (a)
 - (b) A counter-example is provided by the choice ' $A = I_2$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ '.
 - (c) i. True.
 - ii. True.
 - iii. False. A counter-example is provided by the choice ' $A = B = \mathcal{O}_{2 \times 2}$ '. iv. True.
- 29. (a)
 - (b) -----(c) -----

(d) A possible choice is given by
$$D = \begin{bmatrix} I_2 & \mathbf{0}_4^t \\ \mathbf{0}_4 & J \end{bmatrix}$$
, in which $J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

- 30. (a)
 - (b) —