4.8.1 Exercise: Spaces, bases, and dimensions.

1. Let \mathcal{W} be a subspace of \mathbb{R}^{5} over the reals. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4} \in \mathcal{W}$, and $V=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \mathbf{v}_{3} \mid \mathbf{v}_{4}\right]$. It is known that $\operatorname{dim}(W)=3$, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are pairwise distinct.
(a) Is it possible for $\mathbf{v}_{1}, \mathbf{v}_{2}$ to constitute a basis for \mathcal{W} over the reals?

Justify your answer with reference to the definitions for the notions of basis and dimension.
(b) Is it possible for $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ to constitute a basis for \mathcal{W} ?

Justify your answer with reference to the definitions for the notions of basis and dimension.
(c) Is the statement ($\#$) below true or false?
(\sharp) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ constitute a basis for \mathcal{W} over the reals. Then the $\mathcal{N}(V)$ contains a non-zero column vector belonging to \mathbb{R}^{4}.

Justify your answer.
2. Let A be a (5×6)-matrix with real entries, and B be a (5×9)-matrix with real entries.

Suppose \mathcal{V} is a subspace of \mathbb{R}^{9} over the reals, and

$$
\mathcal{W}=\left\{\begin{array}{l|l}
\mathbf{x} \in \mathbb{R}^{6} & \begin{array}{l}
\text { There exists some } \mathbf{t} \in \mathcal{V} \\
\text { such that } A \mathbf{x}=B \mathbf{t}
\end{array}
\end{array}\right\} .
$$

(a) Verify that $\mathbf{0}_{6} \in \mathcal{W}$.
(b) Verify the statement (\sharp) :
(\sharp) For any $\mathbf{t}, \mathbf{u} \in \mathbb{R}^{6}$, if $\mathbf{t}, \mathbf{u} \in \mathcal{W}$, then $\mathbf{t}+\mathbf{u} \in \mathcal{W}$.
(c) Verify that \mathcal{W} is a subspace of \mathbb{R}^{6} over the reals.
3. Let A be a $(p \times q)$-matrix with real entries.

Verify that $\mathcal{C}(A)$ is a subspace of \mathbb{R}^{p} over the reals, with With direct reference to the definition for the notion of subspace of \mathbb{R}^{n},
4. Let $S_{1}=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid\right.$ The sum of the first two entries of \mathbf{x} is greater than or equal to the last entry of $\left.\mathbf{x}.\right\}$.
(a) For each statement below, determine whether it is true of false. Justify your answer.
i. $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in S$.
ii. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \in S$.
iii. $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right] \in S$.
iv. $\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right] \in S$.
v. $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right] \in S$.
(b) i. Let $\mathbf{u} \in S$. Denote the j-th entry of \mathbf{u} by u_{j} for each $j=1,2,3$.

Verify the statement (\sharp).
(\sharp) Let $\alpha \in \mathbb{R}$. Suppose $\alpha \mathbf{u} \in S$. Then $\alpha \geq 0$.
ii. Name some $\mathbf{w} \in S$ and some $\alpha \in \mathbb{R}$ for which $\mathbf{u} \in S$ and $\alpha \mathbf{u} \notin S$, if such exist. Justify your answer.
iii. Is S a subspace of \mathbb{R}^{3} ? Justify your answer.
5. Let $S=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid\right.$ The sum of the cubes of the respective entries of \mathbf{x} is 0$\}$.
(a) For each statement below, determine whether it is true of false. Justify your answer.
i. $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in S$.
ii. $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \in S$.
iii. $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \in S$.
iv. $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right] \in S$.
v. $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \in S$.
(b) i. Let $\mathbf{u}, \mathbf{v} \in S$. Denote the respective j-th entries of \mathbf{u}, \mathbf{v} by u_{j}, v_{j} for each $j=1,2,3$.

Verify the statement (\sharp): -
(\sharp) Suppose $\mathbf{u}+\mathbf{v} \in S$. Then $u_{1} v_{1}\left(u_{1}+v_{1}\right)+u_{2} v_{2}\left(u_{2}+v_{2}\right)+u_{3} v_{3}\left(u_{3}+v_{3}\right)=0$.
ii. Name some $\mathbf{u}, \mathbf{v} \in S$ for which $\mathbf{u}+\mathbf{v} \notin S$, if such exist. Justify your answer.
iii. Is S a subspace of \mathbb{R}^{3} ? Justify your answer
6. Let C be the (4×4)-square matrix given by $C=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.

Let S be the set given by

$$
S=\left\{\begin{array}{l|l}
\mathbf{x} \in \mathbb{R}^{4} & \mathbf{x}^{t} C \mathbf{x}=0 .
\end{array}\right\} .
$$

(a) Verify the statements $\left(\sharp_{1}\right),\left(\sharp_{2}\right)$:-
$\left(\sharp_{1}\right) \mathbf{0}_{4} \in S$.
$\left(\sharp_{2}\right)$ For any $\mathbf{v} \in \mathbb{R}^{4}$, for any $\alpha \in \mathbb{R}$, if $\mathbf{v} \in S$ then $\alpha \mathbf{v} \in S$.
(b) i. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{4}$. Suppose $\mathbf{w}=\mathbf{u}+\mathbf{v}$.

Verify that $\mathbf{w}^{t} C \mathbf{w}=\mathbf{u}^{t} C \mathbf{u}+\mathbf{v}^{t} C \mathbf{v}+2 \mathbf{u}^{t} C \mathbf{v}$.
ii. Is it true that $\mathbf{e}_{1}^{(4)} \in S$? Justify your answer.
iii. Is S a subspace of \mathbb{R}^{4} ? Justify your answer.
7. Let C be the (4×4)-square matrix given by $C=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$.

Let S be the set given by

$$
S=\left\{\begin{array}{l|l}
\mathbf{x} \in \mathbb{R}^{4} & \mathbf{x}^{t} C \mathbf{x}=0 .
\end{array}\right\} .
$$

(a) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{4}$. Suppose $\mathbf{w}=\mathbf{u}+\mathbf{v}$.

Verify that $\mathbf{w}^{t} C \mathbf{w}=\mathbf{u}^{t} C \mathbf{u}+\mathbf{v}^{t} C \mathbf{v}+2 \mathbf{u}^{t} C \mathbf{v}$.
(b) Is S a subspace of \mathbb{R}^{4} ? Justify your answer.
8. For each part below, consider the column vectors belonging to \mathbb{R}^{4}, denoted by $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ here

With direct reference to the definitions for the notion of set equality and span, verify that $\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}\right)=\mathbb{R}^{4}$.
(a) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
(c) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$.
(b) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
(d) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$.
9. For each part below, consider the column vectors belonging to \mathbb{R}^{n} (for various vaalues of n) denoted by $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{n}$ here.

- Determine whether $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{n}$ constitute a basis for \mathbb{R}^{n}.
- Where $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{n}$ indeed constitute a basis for \mathbb{R}^{n}, express any arbitrary column vector \mathbf{v} belonging to \mathbb{R}^{n}, whose j-th entry is denoted by v_{j} for each $j=1,2, \cdots, n$, as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{n}$ over the reals.

Justify your answer. (You may use whatever characterization of basis for \mathbb{R}^{n}. However, a characterization in terms of invertibility of square matrices may be more convenient, in view of what you are asked to do beyond determining whether $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{n}$ constitute a basis for \mathbb{R}^{n} over the reals.)
(a) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$.
(b) $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 \\ 1 \\ -3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]$.
(c) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 0 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}-1 \\ 0 \\ 3 \\ 3\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}4 \\ 2 \\ 2 \\ 4\end{array}\right]$.
(d) $\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 5\end{array}\right]$.
(e) $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 3 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 5\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}2 \\ -2 \\ 4 \\ 5\end{array}\right]$.
(f) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
(g) $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1 \\ 0\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ -1\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
10. Consider each of the collection of column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$ below. Write $\mathcal{W}=\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots\right\}\right)$.

- Determine the dimension of \mathcal{W},
- obtain a basis for \mathcal{W} over the reals which is a minimal spanning set extracted from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$, and
- express the remaining column vectors as linear combinations of the column vectors in the basis obtained.
(a) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$.
(b) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-3 \\ 1 \\ -1 \\ 6\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}-7 \\ 3 \\ -3 \\ -14\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 5\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$.
(c) $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ -3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}1 \\ 2 \\ -2 \\ -3\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}1 \\ 3 \\ -1 \\ -1\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}3 \\ 8 \\ 0 \\ -5\end{array}\right]$.
(d) $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 4 \\ 3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}3 \\ 4 \\ 3 \\ 4\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}4 \\ 5 \\ 5 \\ 10\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}7 \\ 8 \\ 11 \\ 13\end{array}\right]$.
(e) $\mathbf{u}_{1}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 3\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}3 \\ -4 \\ 9 \\ 5\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}2 \\ -3 \\ 8 \\ 7\end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{l}1 \\ 0 \\ 5 \\ 2\end{array}\right], \mathbf{u}_{6}=\left[\begin{array}{c}5 \\ -8 \\ 19 \\ 17\end{array}\right]$.

11. Let A be a (3×6)-matrix with real entries, $\mathbf{b} \in \mathbb{R}^{3}$, and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{6}$.

Suppose \mathbf{u} is a solution of $\mathcal{L S}(A, \mathbf{b})$, and \mathbf{v} is a solution of $\mathcal{L S}(A, \mathbf{3} \mathbf{b})$.
(a) Write down, if such exists, a scalar multiple of \mathbf{u} which is also a solution of $\mathcal{L S}(A, 3 \mathbf{b})$.

Justify your answer.
(b) Write down, if such exists, some $\mathbf{y} \in \mathbb{R}^{6}$ which simultaneously satisfies $\left(\sharp_{1}\right),\left(\sharp_{2}\right)$:-
$\left(H_{1}\right) \mathbf{y} \in \mathcal{N}(A)$,
$\left(\sharp_{2}\right) \mathbf{y}=\alpha \mathbf{u}+\beta \mathbf{v}$ for some non-zero real numbers α, β.
Give your answer in the form of an appropriate linear combination of \mathbf{u}, \mathbf{v}.
Justify your answer.
(c) Suppose $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3} \in \mathbb{R}^{6}$, and $\mathcal{N}(A)=\operatorname{Span}\left(\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}\right)$.

Fill in the blanks, labelled (I), (II), with appropriate non-zero real numbers to make (*) a true statement:-
(*) There exist some $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that $\sum_{\text {(I) }} \mathbf{u}+{ }_{\text {(II) }} \mathbf{v}=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}$.
(d) Further suppose it is known that $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}-1 \\ 4 \\ -5 \\ 5 \\ 3 \\ 3\end{array}\right], \mathbf{w}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{c}\kappa \\ 0 \\ \lambda \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{w}_{3}=\left[\begin{array}{c}-2 \\ 0 \\ 2 \\ 0 \\ 3 \\ 1\end{array}\right]$, where κ, λ are some real numbers.
What are the values of κ, λ ? Justify your answer.
Remark. You do not need to know what A, \mathbf{b} are, and you are not required to find them.
12. Let $A=\left[\begin{array}{cccccccc}1 & 1 & 1 & 0 & 2 & 3 & -1 & 1 \\ 3 & 2 & 1 & -2 & 7 & 1 & -2 & -3 \\ 2 & 3 & 4 & -1 & 6 & 5 & -3 & 2 \\ 1 & 2 & 3 & -1 & 4 & 2 & -2 & 1 \\ -1 & -1 & -1 & -2 & 0 & -9 & 2 & -2 \\ 4 & 3 & 2 & -2 & 9 & 4 & -3 & -2\end{array}\right], B=\left[\begin{array}{cccccccc}1 & 1 & 1 & 0 & 2 & 3 & -1 & 1 \\ 0 & 1 & 2 & 2 & -1 & 8 & -1 & 6 \\ 0 & 0 & 0 & 1 & -1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Denote the columns of A, from left to right, by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8}$.
Take for granted that A is row-equivalent to B, and that B is a row-echelon form.
(a) Identify the pivot columns in B.
(b) What is the rank of A ?
(c) Write down a basis for $\operatorname{Span}\left(\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8}\right\}\right)$ which is extracted as a minimal spanning set from amongst the column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8}$.
(d) i. What is the dimension of $\mathcal{C}(A)$?
ii. Name a basis for $\mathcal{C}(A)$ from amongst the column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}, \mathbf{a}_{7}, \mathbf{a}_{8}$.
iii. Write down the reduced row-echelon form C which is row-equivalent to A.

Hence, or otherwise, express \mathbf{a}_{8} in terms of the column vectors in the basis for $\mathcal{C}(A)$ that you have named in the previous part.
(e) i. What is the dimension of $\mathcal{N}(A)$?
ii. Name a basis for $\mathcal{N}(A)$.
(f) i. What is the dimension of $\mathcal{R}(A)$?
ii. Name a basis for $\mathcal{R}(A)$ from amongst the columns of C^{t}, if such exists.
iii. Name a basis for $\mathcal{R}(A)$ from amongst the columns of B^{t}, if such exists.
iv. What is the dimension of $\mathcal{N}\left(A^{t}\right)$?
13. Let A be a (6×9)-matrix with real entries, whose columns from left to right are denoted by $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{u}_{6}, \mathbf{u}_{7}, \mathbf{u}_{8}, \mathbf{u}_{9}$ respectively.
Let B be a (6×9)-matrix with real entries, given by

$$
B=\left[\begin{array}{ccccccccc}
1 & 0 & c_{13} & 0 & c_{15} & c_{16} & 0 & 0 & c_{19} \\
0 & 1 & c_{23} & 0 & c_{25} & c_{26} & 0 & 0 & c_{29} \\
0 & 0 & 0 & 1 & c_{35} & c_{36} & 0 & 0 & c_{39} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & c_{49} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & c_{59} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

in which the $c_{i j}$'s are some real numbers.
Suppose A is row-equivalent to B.
(a) Is B a reduced row-echelon form?

- If yes, also name all pivot columns of B.
- If no, write ' B is not a reduced row-echelon form'.
(b) i. Name a basis for $\mathcal{C}(A)$ over the reals from amongst the column vectors

$$
\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{u}_{6}, \mathbf{u}_{7}, \mathbf{u}_{8}, \mathbf{u}_{9}
$$

ii. What is the dimension of $\mathcal{C}(A)$ over the reals?
(c) i. Name those sets amongst $\mathcal{R}\left(A^{t}\right), \mathcal{C}(A), \mathcal{R}(B), \mathcal{C}\left(B^{t}\right), \mathcal{R}\left(B^{t}\right)$ which are equal to $\mathcal{R}(A)$.
ii. Write down a basis for $\mathcal{R}(A)$ over the reals.
iii. What is the dimension of $\mathcal{R}(A)$ over the reals?
(d) i. Write down an equality which relates the respective dimensions of $\mathcal{N}\left(A^{t}\right)$ and $\mathcal{C}\left(A^{t}\right)$ over the reals.
ii. What is the dimension of $\mathcal{N}\left(A^{t}\right)$ over the reals?
14. Let A, C be (4×6)-matrices respectively given by

$$
A=\left[\begin{array}{cccccc}
1 & a_{12} & 3 & a_{14} & 2 & 2 \\
0 & a_{22} & 2 & 1 & 2 & 1 \\
-1 & a_{32} & 3 & a_{34} & 2 & 3 \\
2 & a_{42} & 0 & a_{44} & 5 & -6
\end{array}\right], \quad C=\left[\begin{array}{cccccc}
c_{11} & c_{12} & 1 & c_{14} & 1 & c_{16} \\
c_{21} & c_{22} & 2 & c_{24} & 1 & c_{26} \\
c_{31} & c_{32} & c_{33} & c_{34} & c_{35} & c_{36} \\
0 & 0 & 0 & 0 & c_{45} & c_{46}
\end{array}\right]
$$

in which the $a_{i j}$'s, $c_{i j}$'s are some numbers.
It is known that:-

- the matrix A row-equivalent to C, and
- C is a reduced row-echelon form whose 2 -nd column is a pivot column, and whose 6 -th column is a free column.
(a) i. Is the 1 -st column in C a pivot column? How about the 3 -rd column in C ? Why?
ii. What are the values of $c_{11}, c_{21}, c_{31}, c_{12}, c_{22}, c_{32}, c_{33}$ and $a_{12}, a_{22}, a_{32}, a_{42}$?
iii. Is the 5 -th column in C a pivot column or a free column? How about the 4 -th column in C ? Why?
iv. What are the values of $c_{14}, c_{24}, c_{34}, c_{35}, c_{45}, c_{16}, c_{26}, c_{36}, c_{46}$, and a_{41}, a_{43}, a_{44} ?
(b) What is the dimension of $\mathcal{C}(A)$? What is the dimension of $\mathcal{N}(A)$?
(c) We denote the columns of A, from left to right, by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}$.

For each collection of column vectors below, decide whether it constitutes a bases for $\mathcal{C}(A)$?
i. $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$,
ii. $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}$,
iii. $\mathbf{a}_{3}, \mathbf{a}_{4}$,
iv. $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}$,
v. $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{6}$.

Justify your answer.
(d) i. What is the dimension of $\mathcal{R}(A)$?
ii. We denote the rows of C, from top to bottom, by $\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}, \mathbf{d}_{4}$. Name a basis for $\mathcal{R}(A)$ amongst $\mathbf{d}_{1}{ }^{t}, \mathbf{d}_{2}{ }^{t}, \mathbf{d}_{3}{ }^{t}, \mathbf{d}_{4}{ }^{t}$, if such exists.
(e) Determine whether the statement (\sharp) is true or false. Justify your answer.
(\sharp) : Any two non-trivial solutions of the homogeneous system $\mathcal{L S}\left(A^{t}, \mathbf{0}_{6}\right)$ are scalar multiples of each other.
15. Let $A=\left[\begin{array}{cccccc}1 & 0 & 1 & 1 & 2 & 4 \\ 2 & 1 & -1 & -3 & 4 & 5 \\ -2 & -1 & 1 & 3 & -3 & -4\end{array}\right], A^{\prime}=\left[\begin{array}{cccccc}1 & 0 & 1 & 1 & 0 & 2 \\ 0 & 1 & -3 & -5 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$.

Take for granted that A^{\prime} is the reduced row-echelon form which is row-equivalent to A.
Let $\mathbf{z}_{1}=\left[\begin{array}{c}1 \\ 0 \\ 1 \\ 0 \\ 1 \\ -1\end{array}\right], \mathbf{z}_{2}=\left[\begin{array}{c}-2 \\ 5 \\ -1 \\ 1 \\ -1 \\ 1\end{array}\right], \mathbf{z}_{3}=\left[\begin{array}{c}-4 \\ 9 \\ 2 \\ 0 \\ -1 \\ 1\end{array}\right]$.
(a) What is the dimension of $\mathcal{N}(A)$?
(b) Do $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}$ constitute a basis for $\mathcal{N}(A)$? Justify your answer.
16. (a) Let B be a $(p \times q)$-matrix with real entries.

With reference to the definition for the notions of set equality and of column space, prove that the statements $\left(\sharp_{1}\right),\left(\sharp_{2}\right)$ are logically equivalent:-
$\left(\sharp_{1}\right)$ For any $c \in \mathbb{R}^{p}$, the system $\mathcal{L S}(B, \mathbf{c})$ is consistent.
$\left(\sharp_{2}\right) \mathcal{C}(B)=\mathbb{R}^{p}$.
Remark. Recall how column space is defined in terms of span, and how consistency of systems can be reformulated in terms of linear combinations.
(b) Let α be a real number, and $A_{\alpha}=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 2 & 0 & 4 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 2 & 5 & 5 & \alpha\end{array}\right]$.
i. For which value(s) of α is it true that $\mathcal{N}\left(A_{\alpha}\right)=\left\{\mathbf{0}_{4}\right\}$? Justify your answer.
ii. Let $\beta, c_{1}, c_{2}, c_{3}, c_{4}$ be real numbers.

For which value(s) of β is the system ($S_{\beta ; c_{1}, c_{2}, c_{3}, c_{4}}$)
inconsistent for some values of $c_{1}, c_{2}, c_{3}, c_{4}$?
Justify your answer. You may apply results which are related to the Rank-nullity Formulae, if relevant and applicable.
17. We denote the rank of an arbitrary matrix with real entries, say, D, by $r(D)$.

Take for granted the result (\sharp) :-
(\sharp) Let B, C are square matrices of the same size with real entries. Suppose $r(B)=s, r(C)=t$. Then the rank of $B C$ is at most $\min (s, t)$.
(a) Apply mathematical induction to prove the statement below:-

Suppose A is a $(p \times p)$-square matrix. Then, for any positive integer n, the inequality $r\left(A^{n+1}\right) \leq r\left(A^{n}\right)$.
(b) Name an appropriate (2×2)-square matrix F for which $r\left(F^{n}\right)=r(F)$ for each positive integer n.
(c) Name an appropriate (4×4)-square matrix G for $r\left(G^{4}\right)<r\left(G^{3}\right)<r\left(G^{2}\right)<r(G)$.
18. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{5}$.

Suppose none of $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$ is the zero column vector.
Prove that the statements below are logically equivalent, with direct reference to the definitions for the notions of set equality and span:-
(1) \mathbf{u}, \mathbf{v} are non-zero scalar multiples of each other.
(2) $\operatorname{Span}(\{\mathbf{u}\})=\operatorname{Span}(\{\mathbf{u}, \mathbf{v}\})$.
(3) $\operatorname{Span}(\{\mathbf{u}\})=\operatorname{Span}(\{\mathbf{u}+\mathbf{v}\})$.
19. Suppose A is a (7×8)-matrix with real entries, B is an (8×8)-square matrix with real entries, and C is an (8×9)-matrix with real entries.
(a) Show that $\mathcal{N}\left(3 A\left(B^{2}-3 B\right) C\right)=\mathcal{N}\left(A\left(B^{2}-3 B\right) C\right)$ are equal as sets.
(b) What is the value of $\operatorname{dim}\left(\mathcal{N}\left(3 A\left(B^{2}-3 B\right) C\right)+\operatorname{dim}\left(\mathcal{C}\left(2 A\left(B^{2}-3 B\right) C\right)\right)\right.$?

Justify your answer.
20. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{v} \in \mathbb{R}^{9}$, and $\mathcal{V}=\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}\right), \mathcal{W}=\operatorname{Span}\left(\left\{\mathbf{v}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}\right)$.

Suppose the statements (1), (2), (3) hold:-
(1) $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are linearly independent over the reals.
(2) \mathbf{v} is the linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ with respect to real scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$.
(3) $\alpha_{1} \neq 0$.
(a) Verify that $\mathbf{v}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are linearly independent are linearly independent.
(b) Verify the statements below:-
i. For any $\mathbf{x} \in \mathbb{R}^{9}$, if $\mathbf{x} \in \mathcal{V}$ then $\mathrm{x} \in \mathcal{W}$.
ii. For any $\mathbf{x} \in \mathbb{R}^{9}$, if $\mathbf{x} \in \mathcal{W}$ then $\mathbf{x} \in \mathcal{V}$.

Remark. According to part (b), we may conclude that $\mathcal{V}=\mathcal{W}$ as sets. Overall, the result described by the entire question is an illustration on what is usually known as 'Replacement Theorem' in linear algebra.
21. Let a, b, c be positive real numbers, and k be a real number.

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
k \\
a \\
a^{2} \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
0 \\
1+a^{2} \\
b \\
b^{2} \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{c}
1 \\
0 \\
1+a^{2} \\
0 \\
1+b^{2} \\
c \\
c^{2}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
0 \\
-a \\
1 \\
b \\
b^{2} \\
0 \\
0
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-b \\
1 \\
c \\
c^{2}
\end{array}\right] .
$$

and

$$
\mathcal{W}=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}\right) .
$$

Suppose $\mathbf{v}_{1}{ }^{t} \mathbf{v}_{2}=0$.
(a) What is the value of k ? Justify your answer.
(b) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly independent, with direct reference to the definition of linear dependence/independence.
(c) i. Show that \mathbf{x} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
ii. Show that \mathbf{v}_{3} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}$.
iii. Hence, or otherwise, show that the statement $\left(\sharp_{1}\right)$ is true, with reference to the definition for set equality:$\left(\sharp_{1}\right) \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}\right\}\right)$.
(d) Determine whether the statement $\left(\sharp_{2}\right)$ is true or false. Justify your answer.
$\left(\sharp_{2}\right) \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}\right)=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}, \mathbf{y}\right\}\right)$.
22. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5} \in \mathbb{R}^{8}$, and $\mathcal{V}=\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}\right)$.

Define $\mathbf{x}=\mathbf{u}_{1}-\mathbf{u}_{2}+\mathbf{u}_{3}, \mathbf{y}=\mathbf{u}_{2}+\mathbf{u}_{4}-\mathbf{u}_{5}$.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ are linearly independent over the reals.
(a) Are $\mathbf{x}, \mathbf{y}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ linearly independent over the reals? Justify your answer with direct reference to the definition of linear independence.
(b) Does every linear combination of $\mathbf{x}, \mathbf{y}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ belong to \mathcal{V} ? Justify your answer with direct reference to the definition of linear combinations.
(c) Is every column vector belonging to \mathcal{V} a linear combination of $\mathbf{x}, \mathbf{y}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$? Justify your answer with direct reference to the definition of linear combinations.
(d) Do $\mathbf{x}, \mathbf{y}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ constitute a basis for \mathcal{V} ? Justify your answer with reference to the definition of basis.
23. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{4}, \mathbf{v}$ be column vectors belonging to \mathbb{R}^{7}.

Prove that the statements (1), (2) are logically equivalent, with direct reference to the definitions for the notions of set equality, span, linear combination:-
(1) \mathbf{v} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ over the reals.
(2) $\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{v}\right\}\right)=\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}\right)$.
24. Determine whether the statement (\sharp) is true. Justify your answer with an appropriate argument with reference to the definitions for the notions of row space, and invertible matrices.
(\sharp) Let A, B be (6×8)-matrices with real entries, and P, Q are invertible (6×6)-matrices with real entries. Suppose $\mathcal{R}(A)=\mathcal{R}(B)$. Then $\mathcal{R}(P A)=\mathcal{R}(Q B)$.

25 . Let A, B be (5×7)-matrices. Suppose $\mathcal{R}(A)=\mathcal{R}(B)$.
(a) Verify the statements below:-
i. Suppose the rank of A is 1 . Then A is row-equivalent to B.
ii. Suppose the rank of A is 2. Then A is row-equivalent to B.

Remark. What can you say about the reduced row-echelon forms A^{\prime}, B^{\prime} respectively row-equivalent to A, B ? In particular, what can be said of the non-zero rows in A^{\prime}, B^{\prime} ?
(b) Determine whether the statement (\sharp) is true. Justify your answer.
(\sharp) Suppose the rank of A is 3 . Then A is row-equivalent to B.
26. Determine whether the statement (\sharp) is true. Justify your answer with an appropriate argument, with reference to the definitions for the notions of subspace of \mathbb{R}^{n}, basis and dimension.
(\sharp) Let \mathcal{U}, \mathcal{V} be subspaces of \mathbb{R}^{5} over the reals, and $\mathcal{W}=\mathcal{U} \cap \mathcal{V}$.
Suppose $\operatorname{dim}(\mathcal{U})=3$ and $\operatorname{dim}(\mathcal{V})=3$.
Then \mathcal{W} contains a non-zero column vector belonging to \mathbb{R}^{5}.
27. Prove the statement (\sharp) :
(\sharp) Let A, B be two (5×5)-square matrices with real entries.
Let C be the (5×5)-square matrix defined by $C=A^{t} A+B^{t} B$, and D be the (10×5)-matrix defined by

$$
D=\left[\frac{A}{B}\right]
$$

Suppose C is not invertible. Then the rank of D is at most 4.
Remark. The Rank-nullity Formula may be useful at some point of the argument.
You may also find the statement ((\square) useful at some point:-
(দ) Let $\mathbf{y} \in \mathbb{R}^{n}$. Suppose $\mathbf{v}^{t} \mathbf{v}=0$. Then $\mathbf{v}=\mathbf{0}_{n}$.
(Can you give a proof for ((\square) ?)
28. Recall the definition for the notion of subspace of a subspace:

Let \mathcal{V}, \mathcal{W} be a subspace of \mathbb{R}^{n} over the reals.
We say that \mathcal{V} is a subspace of \mathcal{W} over the reals if and only if the statement (\dagger) holds:-
(\dagger) For any $\mathbf{x} \in \mathbb{R}^{n}$, if $\mathbf{x} \in \mathcal{V}$ then $\mathbf{x} \in \mathcal{W}$.
(a) Prove the statement (\sharp) :-
(\sharp) Suppose A is an $(m \times n)$-matrix with real entries, and B is an $(n \times p)$-matrix with real entries. Then $\mathcal{C}(A B)$ is a subspace of $\mathcal{C}(A)$.
(b) Dis-prove the statement (\llcorner) by providing a counter-example against it:-
(দ) Suppose A is an (2×2)-matrix with real entries, and B is an (2×2)-matrix with real entries. Then $\mathcal{C}(A)$ is a subspace of $\mathcal{C}(A B)$.

Remark. Can you name some appropriate A, B for which $\mathcal{C}(A)=\mathbb{R}^{2}$ and $\mathcal{C}(B) \neq \mathbb{R}^{2}$?
(c) For each of the statements below, determine whether it is true or false. Justify your answer.
i. Suppose A is an $(m \times n)$-matrix with real entries, and B is an $(n \times p)$-matrix with real entries. Further suppose $\mathcal{C}(B)=\mathbb{R}^{n}$. Then $\mathcal{C}(A)$ is a subspace of $\mathcal{C}(A B)$.
ii. Suppose A is an $(m \times n)$-matrix with real entries, and B is an $(n \times n)$-matrix with real entries. Further suppose B is invertible. Then $\mathcal{C}(A)$ is a subspace of $\mathcal{C}(A B)$.
iii. Suppose A is an $(m \times n)$-matrix with real entries, and B is an $(n \times n)$-matrix with real entries. Further suppose $\mathcal{C}(A)$ is a subspace of $\mathcal{C}(A B)$. Then B is invertible.
iv. Suppose B is an $(n \times n)$-matrix with real entries. Further suppose $\mathcal{C}(A)$ is a subspace of $\mathcal{C}(A B)$ for every $(n \times n)$-square matrix A. Then B is invertible.
29. Take for granted the validity of the results (\star) below:-
(\star) Suppose G is an $(m \times n)$-matrix with real entries, and H is an $(n \times p)$-matrix with real entries.
Then $\mathcal{N}(G H)$ is a subspace of $\mathcal{N}(H)$.
(a) Prove the statement (\sharp):
(\sharp) Suppose A is an $(m \times n)$-matrix with real entries, B is an $(n \times p)$-matrix with real entries, and C is a $(p \times q)$-matrix with real entries.
Suppose $\mathcal{N}(A B)$ is a subspace of $\mathcal{N}(B)$ over the reals.
Then $\mathcal{N}(A B C)$ is a subspace of $\mathcal{N}(B C)$ over the reals.
(b) Hence, or otherwise, deduce the statement ($\sharp \sharp$):
(\#\#) Suppose A is an $(m \times n)$-matrix with real entries, B is an $(n \times p)$-matrix with real entries, and C is a $(p \times q)$-matrix with real entries.
Suppose $\mathcal{N}(A B)=\mathcal{N}(B)$.
Then $\mathcal{N}(A B C)=\mathcal{N}(B C)$.
(c) Prove the statement ($\mathfrak{\square}$):
() Let E be a $(p \times q)$-matrix with real entries, and D be a $(p \times p)$-matrix with real entries.
Suppose there is some positive integer ℓ such that $\mathcal{N}\left(D^{\ell}\right)=\mathcal{N}\left(D^{\ell+1}\right)$.
Then (for the same ℓ,) $\mathcal{N}\left(D^{\ell} E\right)=\mathcal{N}\left(D^{\ell+n} E\right)$ for any positive integer n.
(d) Name some (6×6)-matrix D which satisfies both conditions (1), (2) below:-
(1) $\operatorname{dim}(\mathcal{N}(D))=1, \operatorname{dim}\left(\mathcal{N}\left(D^{2}\right)\right)=2, \operatorname{dim}\left(\mathcal{N}\left(D^{3}\right)\right)=3, \operatorname{dim}\left(\mathcal{N}\left(D^{4}\right)\right)=4$.
(2) $\mathcal{N}\left(D^{n}\right)=\mathcal{N}\left(D^{4}\right)$ for each positive integer n greater than 4 .

Justify your answer.
30. (a) Let A be a $(p \times q)$-matrix with real entries.

Prove the statements below:-
i. $\mathcal{C}(A)=\left\{\mathbf{y} \in \mathbb{R}^{p} \mid\right.$ The system $\mathcal{L S}(A, \mathbf{y})$ is consistent $\}$.
ii. For each integer k between 0 and $p, \operatorname{dim}(\mathcal{C}(A))=p-k$ if and only if $\operatorname{dim}\left(\mathcal{N}\left(A^{t}\right)\right)=k$.

Remark. Apply the Rank-nullity Formula, where relevant and appropriate.
(b) Determine whether the statement is true or false. Justify your answer with an appropriate argument:Let A be a (5×7)-matrix with real entries.
Suppose $\mathcal{L S}\left(A^{t}, \mathbf{0}_{7}\right)$ has a non-trivial solution, say, u, and $\mathcal{N}\left(A^{t}\right)=\operatorname{Span}(\{\mathbf{u}\})$.
then there exists some non-zero column vector $\mathbf{b} \in \mathbb{R}^{5}$ such that both statements (1), (2) hold:
(1) For any $\alpha \in \mathbb{R}$, if $\alpha \neq 0$ then $\mathcal{L S}(A, \alpha \mathbf{b})$ is inconsistent.
(2) For any $\mathbf{d} \in \mathbb{R}^{5}$, if $\mathcal{L S}(A, \mathbf{d})$ is inconsistent, then there exists some unique $\beta \in \mathbb{R}$ such that $\mathcal{L S}(A, \mathbf{d}-\beta \mathbf{b})$ is consistent.

