
4.7.1 Appendix: Proofs on theoretical results about dimension for general subspaces of Rn.

0. The material in this appendix is supplementary.

1. Here we proceed to prove Theorem (1) and Theorem (5).
Theorem (1). (Equivalent formulation for the notion of basis.)
Let W be a subspace of Rq. Suppose u1,u2, · · · ,un ∈ W.
Denote by (1), (2), (3) the statements below (about u1,u2, · · · ,un and W):

(1) dim(W) = n.
(2) u1,u2, · · · ,un are linearly independent over the reals.
(3) Every column vector belonging to W is a linear combination of u1,u2, · · · ,un over the reals.

Suppose any two statements amongst (1), (2), (3) hold.
Then all three statements (1), (2), (3) hold, and u1,u2, · · · ,un constitute a basis for W over the reals.
Theorem (5). (Inequality for dimensions of ‘comparable’ subspaces.)
Let V,W be subspaces of Rq over the reals.
Suppose V is a subspace of W over the reals.
Then dim(V) ≤ dim(W). Moreover, equality holds if and only if V = W.

2. Theorem (5) will be used in the argument for Theorem (1), and therefore will be proved first.
The proof of Theorem (5) relies on the result below that we have introduced earlier and labeled Theorem (⋆) here,
and which is built upon the Replacement Theorem.
Theorem (⋆).
Let W be a n-dimensional subspace of Rq over the reals. Let v1,v2, · · · ,vk ∈ W.
Suppose v1,v2, · · · ,vk are linearly independent over the reals. Then:—

(a) the inequality k ≤ n holds, and
(b) there is some basis for W over the reals constituted by v1,v2, · · · ,vk, and some n−k column vectors belonging

to W.

3. Proof of Theorem (5).
Let V,W be subspaces of Rq over the reals.
Suppose V is a subspace of W over the reals. Write dim(V) = k, and dim(W) = n.
Pick some basis for V over the reals, say, v1,v2, · · · ,vk.
Then by the definition for the notion of subspace of a subspace, each of v1,v2, · · · ,vk belongs to W.
By definition for the notion of basis, v1,v2, · · · ,vk are linearly independent over the reals.
So they are k linearly independent column vectors belonging to W.
Hence, by Theorem (⋆), dim(V) = k ≤ n = dim(W).
Moreover, there is some basis for W over the reals constituted by v1,v2, · · · ,vk, and some n − k column vectors
belonging to W.
We now proceed to verify that dim(V) = dim(W) if and only if V = W.:—

(a) Suppose dim(V) = dim(W). Then n− k = dim(W)− dim(V) = 0.
So v1,v2, · · · ,vk already constitute a basis for W over the reals.
It follows that W = Span ({v1,v2, · · · ,vk}) = V.

(b) Suppose V = W. Then dim(V) = dim(W).

4. Now we give an argument for Theorem (1). It is essentially made up of two lemmas.
Lemma (♯).
Let W be a subspace of Rq. Suppose u1,u2, · · · ,un ∈ W.
Further suppose dim(W) = n, and u1,u2, · · · ,un are linearly independent over the reals.
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Then u1,u2, · · · ,un constitute a basis for W over the reals (and in particular, every column vector belonging to W
is a linear combination of u1,u2, · · · ,un over the reals).
Lemma (♮).
Let W be a subspace of Rq. Suppose u1,u2, · · · ,un ∈ W.
Further suppose dim(W) = n, and every column vector belonging to W is a linear combination of u1,u2, · · · ,un

over the reals.
Then u1,u2, · · · ,un constitute a basis for W over the reals (and, in particular, u1,u2, · · · ,un are linearly indepen-
dent over the reals).

5. Proof of Lemma (♯).
Let W be a subspace of Rq. Suppose u1,u2, · · · ,un ∈ W.
Further suppose dim(W) = n, and u1,u2, · · · ,un are linearly independent over the reals.
Define V = Span({u1,u2, · · · ,un}).
Since u1,u2, · · · ,un are linearly independent over the reals, they constitute a basis for V over the reals. Therefore
dim(V ) = n = dim(W).
We verify that V is a subspace of W over the reals.:—

• By definition, V is a subspace of Rq. By assumption, W is a subspace of Rq.
[We now verify the statement ‘For any x ∈ Rq, if x ∈ V then x ∈ W’.]
Pick any x ∈ Rq. Suppose x ∈ V. By definition of span, x is a linear combination of u1,u2, · · · ,un.
Then, since W is a subspace of Rq over the reals and u1,u2, · · · ,un belong to W, x belongs to W.

Now by Theorem (5), since V is a subspace of W and dim(V) = dim(W), we have V = W.
Hence u1,u2, · · · ,un constitute a basis for W over the reals, (and in particular, every column vector belonging to
W is a linear combination of u1,u2, · · · ,un).

6. Proof of Lemma (♮).
Let W be a subspace of Rq. Suppose u1,u2, · · · ,un ∈ W.
Further suppose dim(W) = n, and every column vector belonging to W is a linear combination of u1,u2, · · · ,un

over the reals.
By assumption, W = Span({u1,u2, · · · ,un}). We may extract from u1,u2, · · · ,un, a minimal spanning set for W,
which consists of r column vectors ud1 ,ud2 , · · · ,udr . Here r is the rank of the matrix U = [ u1 u2 · · · un ],
and the pivot columns in the reduced row-echelon form U ′ which is row-equivalent to U are the d1-th, d2-th, ...,
dr-th columns of U ′.
These r column vectors ud1

,ud2
, · · · ,udr

constitute a basis for W. Therefore dim(W) = r.
Recall that by assumption, dim(W) = n. Then n = r. Therefore ud1

,ud2
, · · · ,udr

are all of u1,u2, · · · ,un.
It follows that u1,u2, · · · ,un constitute a basis for W, (and, in particular, u1,u2, · · · ,un are linearly independent
over the reals).

7. We now complete the proof of Theorem (1).
Proof of Theorem (1).
Let W be a subspace of Rq. Suppose u1,u2, · · · ,un ∈ W.

(a) Suppose dim(W) = n and u1,u2, · · · ,un are linearly independent over the reals.
Then, by Lemma (♯), u1,u2, · · · ,un constitute a basis for W over the reals (and, in particular, every column
vector belonging to W is a linear combination of u1,u2, · · · ,un over the reals).

(b) Suppose dim(W) = n and every column vector belonging to W is a linear combination of u1,u2, · · · ,un over
the reals.
Then, by Lemma (♮), u1,u2, · · · ,un constitute a basis for W over the reals (and, in particular, u1,u2, · · · ,un

are linearly independent over the reals).
(c) Suppose that u1,u2, · · · ,un are linearly independent over the reals, and every column vector belonging to W

is a linear combination of u1,u2, · · · ,un over the reals.
Then, by definition, u1,u2, · · · ,un constitute a basis for W, and dim(W) = n.
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