
4.6.1 Appendix: Proofs of basic theoretical results concerned with column space, row space, and minimal
spanning set.

0. The material in this appendix is supplementary.

1. We have introduced Theorem (1), and we are going to give a proof for this result.
Theorem (1). (‘Minimal spanning set’ and dimension for a span of several column vectors.)
Let u1,u2, · · · ,uq ∈ Rn, and W = Span({u1,u2, · · · ,uq}).

Define U = [ u1 u2 · · · uq ], and denote the rank of U by r.
Then the statements below hold:—

(a) dim(W) = r.
(b) From now on suppose r ≥ 1.

Suppose U ♯ is a row-echelon form which is row-equivalent to U , and suppose the pivot columns of U ♯, from
left to right, are the d1-th, d2-th, ..., dr-th columns of U ♯.
Then ud1 ,ud2 , · · · ,udr constitute a basis for W over the reals.

(c) Suppose U ′ is the reduced row-echelon form which is row-equivalent to U .
For each j = 1, 2, · · · , q, denote the j-th column of U ′ by u′

j , and denote the first r entries, from the top
downwards, by u′

j by α1j , α2j , · · · , αrj .
Suppose the k-th column of U ′ is a free column in U ′.
Then uk = α1kud1

+ α2kud2
+ · · ·+ αrkudr

.

2. In the argument for Theorem (1), we will have to apply a few previously established results. They are stated as
reference here:—
Theorem (⋆).
Let u1,u2, · · · ,uq ∈ Rn.
Suppose u1,u2, · · · ,uq are linearly independent over the reals.
Then:—

(a) the inequality q ≤ n holds, and
(b) Span({u1,u2, · · · ,uq}) is a q-dimensional subspace of Rn over the reals, with a basis over the reals constituted

by u1,u2, · · · ,uq.

Theorem (⋆⋆).
Suppose v1,v2, · · · ,vr,y1,y2, · · · ,ys ∈ Rn. Then the statements below are logically equivalent:—

(1) Each of y1,y2, · · · ,ys is a linear combination of v1,v2, · · · ,vr over the reals.
(2) Span({v1,v2, · · · ,vr,y1,y2, · · · ,ys}) = Span({v1,v2, · · · ,vr}).

Theorem (♯1). (‘Preservation’ of linear combinations by left-multiplication by invertible matrices.)
Let u1,u2, · · · ,uq,v be column vectors with m entries.

Suppose G is an invertible (m×m)-square matrix. Then the statements below are logically equivalent:—

(1) v is a linear combination of u1,u2, · · · ,uq with respect to scalars α1, α2, · · · , αq.

(2) Gv is a linear combination of Gu1, Gu2, · · · , Guq with respect to scalars α1, α2, · · · , αq.

Theorem (♯2). (‘Preservation’ of linear independence by left-multiplication by invertible matrices.)
Let u1,u2, · · · ,uq be column vectors with m entries.

Suppose G is an invertible (m×m)-square matrix. Then the statements below are logically equivalent:—

(1) u1,u2, · · · ,uq are linearly independent.

(2) Gu1, Gu2, · · · , Guq are linearly independent.

We are now ready to give a proof for Theorem (1).
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3. Proof of Theorem (1).
Let u1,u2, · · · ,uq ∈ Rn, and W = Span ({u1,u2, · · · ,uq}).
Define U = [ u1 u2 · · · uq ], and denote the rank of U by r.
If r = 0, then U = 0 and W = {0n} and dim(W) = 0.
From now on we assume r ≥ 1.
Denote by U ′ the reduced row-echelon form which is row-equivalent to U .
For each j = 1, 2, · · · , q, denote the j-th column of U ′ by u′

j , and denote the first r entries, from the top downwards,
by u′

j by α1j , α2j , · · · , αrj .

(a) Since U is row-equivalent to U ′, there exists some invertible (n× n)-square matrix G such that U ′ = GU .
For the same G, we have u′

j = Guj for each j = 1, 2, · · · , q.

(b) By assumption, the rank of U ′ is r.
Suppose the pivot columns in U ′, from left to right, are the d1-th, d2-th, ..., dr-th columns.
We are going to verify that ud1 ,ud2 , · · · ,udr constitute a basis for W. It will then follow that dim(W) = r as
well.

i. For each ℓ = 1, 2, · · · , r, we have u′
dℓ

= e
(n)
ℓ .

Then u′
d1
,u′

d2
, · · · ,u′

dr
are linearly independent over the reals.

Therefore, by Theorem (♯2), the column vectors ud1
,ud2

, · · · ,udr
are linearly independent over the reals.

ii. For each j = 1, 2, · · · , q, all entries in u′
j below its r-th entry are 0.

Then u′
j = α1je

(n)
1 + α2je

(n)
2 + · · ·+ αrje

(n)
r = α1ju

′
d1
α2ju

′
d2

+ · · ·+ αrju
′
dr

.
Therefore u′

j is a linear combination of u′
d1
,u′

d2
, · · · ,u′

dr
over the reals, with a linear relation u′

j = α1ju
′
d1
+

α2ju
′
d2

+ · · ·+ αrju
′
dr

.
Hence, by Theorem (♯1), the column vector uj is a linear combination of ud1

,ud2
, · · · ,udr

over the reals,
with a linear relation uj = α1jud1 + α2jud2 + · · ·+ αrjudr .

iii. Whenever k is amongst 1, 2, · · · , q but not amongst d1, d2, · · · , dr, the column vector uk is a linear combi-
nation of ud1

,ud2
, · · · ,udr

.
Then by Theorem (⋆⋆), we have the equalities

W = Span ({u1,u2, · · · ,uq}) = Span ({ud1
,ud2

, · · · ,udr
})

Recall that ud1
,ud2

, · · · ,udr
are linearly independent over the reals.

It follows from Theorem (⋆) that W is an r-dimensional subspace of Rn over the reals, with a basis given
by ud1

,ud2
, · · · ,udr

.
(c) Suppose the k-th column of U ′ is a free column in U ′. Then k is amongst 1, 2, · · · , q but not amongst

d1, d2, · · · , dr. As argued, uk is a linear combination of ud1
,ud2

, · · · ,udr
over the reals, with a linear rela-

tion uk = α1kud1 + α2kud2 + · · ·+ αrkudr .

4. Recall the definition for the notion of column space and row space, which are formulated in terms of span. We are
going to prove a few theoretical results concerned with the notions of column space and row space.
Definition. (Column space and row space for matrices.)
Let A be a (p× q)-matrix with real entries.

(1) Denote the columns of A, from left to right, by a1,a2, · · · ,aq.
The column space of A is defined to be Span ({a1,a2, · · · ,aq}). It is denoted by C(A).

(2) Write B = At, and denote the columns of B, from left to right, by b1,b2, · · · ,bp.
(So b1,b2, · · · ,bp are the transposes of the respective rows of A from top to bottom.)
The row space of A is defined to be Span ({b1,b2, · · · ,bp}). It is denoted by R(A).

5. We take for granted Lemma (3), whose proof is left as an easy exercise.
Lemma (3).
Suppose A is a (p× q)-matrix with real entries. Then the statements below hold:—

(a) C(At) = R(A), and C(A) = R(At).

(b) i. C(A) =
{
y ∈ Rp There exist some t ∈ Rq such that y = At.

}
.
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ii. R(A) =
{
x ∈ Rq There exist some s ∈ Rp such that xt = stA.

}
.

6. We have introduced a pair of results concerned with column spaces and row spaces. We are going to prove these
results. They are exercises on the definition for the notion of set equality and that of invertibility for square matrices,
together with some basic matrix algebra.
Theorem (4).
Let A,B be matrices with n rows and with real entries.
Suppose H is an invertible (n × n)-square matrix with real entries. Then the statements below are logically
equivalent:—

(1) C(A) = C(B).
(2) C(HA) = C(HB).

Theorem (5).
Let B be a matrix with n columns and with real entries, and G be an (n× n)-square matrix with real entries.
Suppose G in invertible. Then C(B) = C(BG).

7. Proof of Theorem (4).
Let A,B be matrices with n rows and with real entries. Suppose A has p columns, and B has q columns.
Suppose H is an invertible (n× n)-square matrix.

(a) Suppose the statement (1) holds: C(A) = C(B).
[We want to deduce the statement (2): C(HA) = C(HB).]

i. [We want to verify the statement (†): For any y ∈ Rn, if y ∈ C(HA) then y ∈ C(HB).]
Pick any y ∈ Rn. Suppose y ∈ C(HA).

[We want to deduce ‘y ∈ C(HB)’.
This amounts to deducing: ‘there exists some t ∈ Rq such that y = (HB)t.’
Now we ask: How to name such an appropriate t? How do the assumptions ‘C(A) = C(B)’, ‘y ∈ C(HA)’
help?]

By the definition of column space, there exists some u ∈ Rp such that y = (HA)u.
For the same u, we have y = H(Au).
Also by the definition of column space, Au ∈ C(A).
Since C(A) = C(B), we have Au ∈ C(B).
Then by the definition of column space, there exists some t ∈ Rq such that Au = Bt.
Then, for the same y,u, t, we have y = (HA)u = H(Au) = H(Bt) = (HB)t.
Therefore, by the definition of column space, y ∈ C(HB).

ii. [We want to verify the statement (‡): For any z ∈ Rn, if z ∈ C(HB) then z ∈ C(HA).]
Pick any z ∈ Rn. Suppose z ∈ C(HB).
By the definition of column space, there exists some s ∈ Rq such that z = (HB)s.
For the same s, we have z = H(Bs).
Also by the definition of column space, Bs ∈ C(B).
Since C(A) = C(B), we have Bs ∈ C(A).
Then by the definition of column space, there exists some v ∈ Rp such that Bs = Av.
Then, for the same z, s,v, we have z = (HB)s = H(Bs) = H(Av) = (HA)v.
Therefore, by the definition of column space, z ∈ C(HA).

It follows that C(HA) = C(HB).
(b) Suppose the statement (2) holds: C(HA) = C(HB).

Since H is invertible, the matrix inverse H−1 is well-defined as an invertible (n× n)-square matrix.
From the reasoning above (with the roles of ‘A, B, H’ taken by ‘HA, HB, H−1’ respectively), we deduce the
equality C

(
H−1(HA)

)
= C

(
H−1(HB)

)
from the equality C(HA) = C(HB).

It then follows (from the equalities ‘A = H−1(HA)’, ‘B = H−1(HB)’) that

C(A) = C
(
H−1(HA)

)
= C

(
H−1(HB)

)
= C(B) .

3



8. Proof of Theorem (5).
Let B be a (q × n)-matrix with real entries, and G is an (n× n)-square matrix with real entries.
Suppose G is invertible.

(a) [We want to verify the statement (†): For any y ∈ Rq, if y ∈ C(BG) then y ∈ C(B).]
Pick any y ∈ Rq. Suppose y ∈ C(BG).

[We want to deduce ‘y ∈ C(B)’.
This amounts to deducing: ‘there exists some t ∈ Rn such that y = Bt.’
Now we ask: How to name such an appropriate t? How to make use of the assumptions ‘y ∈ C(BG)’?]

By the definition of column space, there exists some s ∈ Rn such that y = (BG)s.
Define t = Gs. By definition, t ∈ Rn.
For the same y, s, t, we have y = (BG)s = B(Gs) = Bt.
Then, by the definition of column space, we have y ∈ C(B).

(b) [We want to verify the statement (‡): For any z ∈ Rn, if z ∈ C(B) then z ∈ C(BG).]
Pick any z ∈ Rq. Suppose z ∈ C(G).

[We want to deduce ‘z ∈ C(BG)’.
This amounts to deducing: ‘there exists some s ∈ Rn such that z = (BG)s.’
Now we ask: How to name such an appropriate s? How to make use of the assumptions ‘z ∈ C(BG)’?]

By definition of column space, there exists some t ∈ Rn such that y = Bt.
Since G is invertible, its matrix inverse G−1 is well-defined as an (n× n)-square matrix.
Define s = G−1t. By definition s ∈ Rn.
For the same z, t, s, we have z = Bt = B(Int) = B[(GG−1)t] = B[G(G−1t)] = B(Gs) = (BG)s.
Then, by the definition of column space, we have z ∈ C(BG).

It follows that C(B) = C(BG).

9. We have explained that an immediate consequence of Theorem (5) is the pair of results below, namely, Theorem
(6) and Theorem (7).
Theorem (6). (Corollary to Theorem (5).)
Let A be a matrix with n rows and with real entries, and H be an (n× n)-square matrix with real entries.
Suppose H in invertible. Then R(A) = R(HA).
Theorem (7). (Corollary to Theorem (6).)

Let A, Ã be matrices with real entries of the same size.

Suppose A is row-equivalent to Ã.

Then R(A) = R
(
Ã
)

.

10. We have introduced the important theoretical result, namely, Theorem (2), which says the respective dimensions of
the column space and the row space of an arbitrary matrix are the same as the rank of that matrix. We are going
to givea proof for Theorem (2).
Theorem (2). (Equality amongst rank, ‘column rank’ and ‘row rank’ for an arbitrarily given matrix.)
Let A be an (n× p)-matrix with real entries.
Suppose A is of rank r.
Then dim(C(A)) = r = dim(R(A)).

11. The proof of Theorem (2) relies on Theorem (1), Theorem (7), and also the technical (but easy) result below about
linear independence and bases. The proof of Lemma (♮) is left as an exercise on the definitions for the notions of
linear independence and basis.
Lemma (♮).
Let v1,v2, · · · ,vk be non-zero column vectors with m real entries.
Suppose that for each j = 1, 2, · · · , k, the first non-zero entry in vj+1 is strictly below the first non-zero entry in vj .

Then v1,v2, · · · ,vk are linearly independent over the reals, and constitute a basis for Span({v1,v2, · · · ,vk}).
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12. Proof of Theorem (2).
Let A be an (n× p)-matrix with real entries.
Suppose A is of rank r.
Denote by A′ the reduced row-echelon form which is row-equivalent to A.
By definition, there are:—

• r non-zero rows in A′,
• r leading ones in A′, and
• r pivot columns in A′.

(a) Label the columns of A, from left to right, by a1,a2, · · · ,ap.
Suppose the pivot columns of A′ are the d1-th, d2-th, ..., dr-th columns of A′.
By Lemma (3), we have C(A) = Span({a1,a2, · · · ,ap}).
By Theorem (1), ad1

,ad2
, · · · ,adr

constitute a basis for Span({a1,a2, · · · ,ap}) over the reals.
Then dim(C(A)) = dim(Span({a1,a2, · · · ,ap})) = r.

(b) We now proceed to verify that dim(R(A)) = r.
By Theorem (7), since A is row-equivalent to A′, we have R(A) = R(A′).
We now display a basis with r column vectors for R(A′) over the reals:—

• Write B = (A′)t. The only non-zero columns of B are the first r columns of B. Label them, from left to
right, by b1,b2, · · · ,br. They are the respective transposes of the 1-st, 2-nd, ..., r-th rows of A′.
For each j = 1, 2, · · · , r, the first non-zero entry of the (j + 1)-th row of A′ is strictly to the right of the
first non-zero entry of the j-th row of A′.
Then the first non-zero entry of bj+1 is strictly below the first non-zero entry of bj .
Then by Lemma (♮), b1,b2, · · · ,br constitute a basis for Span({b1,b2, · · · ,br}) over the reals.
Recall that the columns of B other than the first r columns are all given by 0p (which is trivially a linear
combination of b1,b2, · · · ,br).
Then by the definition of row space and column space, we have the equalities

R(A′) = C(B) = Span({b1,b2, · · · ,br,0p,0p, · · · ,0p}) = Span({b1,b2, · · · ,br}).

(The last equality is due to Theorem (⋆⋆).)
Therefore b1,b2, · · · ,br constitute a basis for R(A′).

Now we have dim(R(A)) = dim(R(A′)) = r.
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