
4.5.1 Appendix: Proofs of basic theoretical results concerned with bases and dimensions for general
subspaces of column vectors.

0. The material in this appendix is supplementary.

1. We have introduced these results:—
Theorem (1). (Upper bound of number of column vectors in a basis for a subspace of Rn over the
reals.)
Every basis for any subspace of Rn over the reals has at most n column vectors.
Theorem (2). (Existence of basis for an arbitrary non-zero subspace of Rn over the reals.)
Suppose V is a non-zero subspace of Rn over the reals. Then there is a basis for V over the reals which consists of
at least one and at most n column vectors with n real entries.

2. We are going to give a proof for Theorem (2). In its argument, two results on linear dependence and linear
independence that we have learnt earlier will play a crucial role. They are Lemma (∗) and Lemma (∗∗).
Lemma (∗).
Let w1,w2, · · · ,wk,v ∈ Rn.
Suppose w1,w2, · · · ,wk are linearly independent over the reals.
Then the statements below are logically equivalent:—

(∗1) w1,w2, · · · ,wk,v are linearly independent over the reals.
(∗2) v is not a linear combination of w1,w2, · · · ,wk over the reals.

Lemma (∗∗).
Let w1,w2, · · · ,wℓ ∈ Rn. Suppose w1,w2, · · · ,wℓ are linearly independent over the reals. Then ℓ ≤ n.
Remark. Recall that Lemma (∗∗) is essentially what Theorem (1) is about.

3. Proof of Theorem (2).
Suppose V is a non-zero subspace of Rn over the reals.

(a) By assumption we may pick some u1 ∈ V so that ⊓1 ̸= 0n.
u1 is linearly independent over the reals.
If every column vector belonging to V is a linear combination of u1 over the reals, then u1 constitutes a basis
for V over the reals.

(b) Suppose that not every column vector belonging to V is a linear combination of u1 over the reals.
Then we may pick some u2 ∈ V so that u2 is not a linear combination of u1 over the reals.
By Lemma (∗), u1,u2 are linearly independent over the reals.
If every column vector belonging to V is a linear combination of u1,u2 over the reals, then u1,u2 constitute a
basis for V over the reals.

(c) Suppose that not every column vector belonging to V is a linear combination of u1,u2 over the reals.
Then we may pick some u3 ∈ V so that u3 is not a linear combination of u1,u2 over the reals.
By Lemma (∗), u1,u2,u3 are linearly independent over the reals.
If every column vector belonging to V is a linear combination of u1,u2,u3 over the reals, then u1,u2,u3

constitute a basis for V over the reals.
(d) Suppose j is any one integer greater than j.

Under the assumption that not every column vector belonging to V is a linear combination of u1, · · · ,uj−1

over the reals, we may pick some uj ∈ V so that uj is not a linear combination of u1, · · · ,uj−1 over the reals.
By Lemma (∗), these same column vectors u1, · · ·uj−1,uj are linearly independent over the reals.

(e) We have obtained, in succession, some sequence of column vectors u1,u2,u3, · · · ∈ V, which are linearly
independent vectors in Rn.
By Lemma (∗∗), this sequence terminates at up, for some integer p ≤ n.
It is then necessarily true that every column vector belonging to V is a linear combination of u1,u2, · · · ,up

over the reals; ( otherwise, we could repeat the construction to obtain up+1).
It follows that the p vectors u1,u2, · · · ,up constitute a basis for V over the reals.
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4. We now proceed to prove the Replacement Theorem:—
Theorem (7). (Replacement Theorem.)
Let W be a subspace of Rn over the reals. Let p, q be positive integers.
Let u1,u2, · · · ,up, t1, t2, · · · , tq ∈ W.
Suppose t1, t2, · · · , tq constitute a basis for W over the reals.
Suppose u1,u2, · · · ,up are linearly independent over the reals.
Then:—

(a) the inequality p ≤ q holds, and
(b) u1,u2, · · · ,up, and some q− p column vectors amongst t1, t2, · · · , tq together, constitute a basis of W over the

reals.

5. To prepare the way for an argument for Theorem (7), we prove two weaker results first.
Lemma (7’). (Baby version of Replacement Theorem.)
Let W be a subspace of Rn over the reals. Suppose v1,v2, · · · ,vk constitute a basis for W over the reals.
Let u ∈ Rn. Suppose u ̸= 0n, and u is a linear combination of v1,v2, · · · ,vk over the reals.
Then, the column vector u and some k − 1 column vectors amongst v1,v2, · · · ,vk together, constitutes a basis of
W over the reals.

6. Proof of Lemma (7’).
Let W be a subspace of Rn. Suppose v1,v2, · · · ,vk constitute a basis for W over the reals.
Let u ∈ Rn. Suppose u ̸= 0n, and u is a linear combination of v1,v2, · · · ,vk over the reals.
By assumption, there exist some α1, α2, · · · , αk ∈ R such that u = α1v1 + α2v2 + · · ·+ αkvk.
By assumption u ̸= 0n. Then at least one of α1, α2, · · · , αk is non-zero.
Without loss of generality, suppose α1 ̸= 0.
(Otherwise, choose the first ℓ for which αℓ is non-zero. Then re-label α1,v1 as αℓ,vℓ respectively, and αℓ,vℓ as
α1,v1 respectively.)
We verify that u,v2,v3, · · · ,vk constitute a basis for W over the reals:

• [We verify (BL): ‘u,v2,v3, · · · ,vk are linearly independent over the reals.’]
Pick any β, γ2, γ3, · · · , γk ∈ R.
Suppose βu+ γ2v2 + γ3v3 + · · ·+ γkvk = 0n.
Then

0n = β(α1v1 + α2v2 + · · ·+ αkvk) + γ2v2 + γ3v3 + · · ·+ γkvk

= βα1v1 + (βα2 + γ2)v2 + (βα3 + γ3)v3 + · · ·+ (βαk + γk)vk

By assumption v1,v2, · · · ,vk are linearly independent over the reals.
Then

βα1 = 0 = βα2 + γ2 = βα3 + γ3 = · · · = βαk + γk.

Recall that α1 ̸= 0. Then since βα1 = 0 , we have β = 0.
Therefore γ2 = γ3 = · · · = γk = 0 also.
It follows that u,v2,v3, · · · ,vk are linearly independent over the reals.

• [We verify (BS): ‘Every column vector belonging to W is a linear combination of u,v2,v3, · · · ,vk over the
reals.’]
Pick any x ∈ Rn. Suppose x ∈ W.
By assumption, x is a linear combination of v1,v2,v3, · · · ,vk over the reals.
Then there exist some δ1, δ2, · · · , δk ∈ R such that x = δ1v1 + δ2v2 + · · ·+ δkvk.
Now recall that u = α1v1 + α2v2 + · · ·+ αkvk.

Then v1 =
1

α1
u− α2

α1
v2 −

α3

α1
v3 − · · · − αk

α1
vk.

Therefore, for the same x, we have

x = δ1

(
1

α1
u− α2

α1
v2 −

α3

α1
v3 − · · · − αk

α1
vk

)
+ δ2v2 + · · ·+ δkvk

=
δ1
α1

u+

(
δ2 −

δ1α2

α1

)
v2 +

(
δ3 −

δ1α3

α1

)
v3 + · · ·+

(
δk − δ1αk

α1

)
vk
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It follows that u,v2,v3, · · · ,vk constitute a basis for W over the reals.

7. Theorem (7”). (Weaker version of Replacement Theorem.)
Let W be a subspace of Rn over the reals. Let p be a positive integer, and s be a non-negative integer.
Let u1,u2, · · · ,up,v1,v2, · · · ,vp,vp+1, · · · ,vp+s ∈ W.
Suppose v1,v2, · · · ,vp,vp+1, · · · ,vp+s constitute a basis for W over the reals.
Further suppose u1,u2, · · · ,up are linearly independent over the reals.
Then, u1,u2, · · · ,up, and some s column vectors amongst v1,v2, · · · ,vp,vp+1, · · · ,vp+s together, constitute a basis
of W over the reals.

8. Proof of Theorem (7”).
Let W be a subspace of Rn over the reals. Suppose v1,v2, · · · ,vp,vp+1, · · · ,vp+s constitute a basis for W.
Let u1,u2, · · · ,up ∈ W. Suppose u1,u2, · · · ,up are linearly independent over the reals.

(a) u1 is a linear combination of v1,v2, · · · ,vp+s over reals. Moreover, u1 ̸= 0n. (Why?)
We apply Lemma (7’):—
After relabelling the indices of v1,v2, · · · ,vp+s if necessary, we obtain some base for W over the reals, given
by u1,v2,v3, · · · ,vp,vp+1 · · · ,vp+s.

(b) Suppose 1 ≤ j < p, and suppose that after relabelling the indices of v1,v2, · · · ,vp+s if necessary, we have
obtained some basis for W over the reals, given by u1, · · · ,uj ,vj+1, · · · ,vp+s.

i. By the definition of the notion of basis, uj+1 is a linear combination of u1, · · · ,uj ,vj+1,vj+2, · · · ,vp+s

over the reals.
Then there exist some κ1, · · · , κj , λ, µj+2, · · · , · · · , µp+s ∈ R such that

uj+1 = κ1u1 + · · ·+ κjuj + λvj+1 + µj+2vj+2 + · · ·+ µp+svp+s.

ii. Note that λ, µj+2, · · · , · · · , µp+s are not all zero. Justification:—
∗ Suppose λ, µj+2, · · · , · · · , µp+s were all zero.

Then the equality uj+1 = κ1u1 + κ2u2 + · · ·+ κjuj would hold.
Such an equality is impossible because u1,u2, · · · ,up are assumed to be linearly independent over the
reals.

iii. Without loss of generality, suppose λ ̸= 0.
We verify that u1, · · · ,uj ,uj+1,vj+2 · · · ,vp+s constitute a basis for V :
• [We verify (BL): ‘u1, · · · ,uj ,uj+1,vj+2, · · · ,vp+s are linearly independent over the reals.’]

Pick any α1, · · · , αj , β, γj+2, · · · , γp+s ∈ R.
Suppose α1u1 + · · ·+ αjuj + βuj+1 + γj+2vj+2 + · · ·+ γp+svp+s = 0n.
Then

0n = α1u1 + · · ·+ αjuj

+β(κ1u1 + · · ·+ κjuj + λvj+1 + µj+2vj+2 + · · ·+ µp+svp+s)

+γj+2vj+2 + · · ·+ γp+svp+s

= (βκ1 + α1)u1 + · · ·+ (βκj + αj)uj + βλvj+1 + (βµj+2 + γj+2)vj+2 + · · ·+ (βµp+s + γp+s)vp+s

Note that u1, · · · ,uj ,vj+1, · · · ,vp+s are linearly independent. Then

βλ = 0 = βκ1 + α1 = · · · = βκj + αj = βµj+2 + γj+2 = · · · = βµp+s + γp+s.

Recall that λ ̸= 0. Then since βλ = 0, we have β = 0.
Therefore α1 = · · · = αj = γj+2 = · · · = γp+s = 0 also.
It follows that u1, · · · ,uj ,uj+1,vj+2, · · · ,vp+s are linearly independent over the reals.

• [We verify (BS): ‘Every column vector belonging to W is a linear combination of
u1, · · · ,uj ,uj+1,vj+2, · · · ,vp+s over the reals.’]
Pick any x ∈ Rn. Suppose x ∈ W.
By assumption, x is a linear combination of u1, · · · ,uj ,vj+1,vj+2 · · · ,vp+s over the reals.
Then there exist some δ1, · · · , δj , δj+1, δj+2, · · · , δp+s ∈ R such that

x = δ1u1 + · · ·+ δjuj + δj+1vj+1 + δj+2vj+2 + · · ·+ δp+svp+s.
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Now recall that

uj+1 = κ1u1 + · · ·+ κjuj + λvj+1 + µj+2vj+2 + · · ·+ µp+svp+s.

Then vj+1 =
1

λ
uj+1 −

κ1

λ
u1 − · · · − κj

λ
uj −

µj+2

λ
vj+2 − · · · − µp+s

λ
vp+s.

Therefore, for the same x, we have

x = δ1u1 + · · ·+ δjuj

+δj+1

(
1

λ
uj+1 −

κ1

λ
u1 − · · · − κj

λ
uj −

µj+2

λ
vj+2 − · · · − µp+s

λ
vp+s

)
+δj+2vj+2 + · · ·+ δp+svp+s

=

(
δ1 −

δj+1κ1

λ

)
u1 + · · ·+

(
δj −

δj+1κj

λ

)
uj +

δj+1

λ
uj+1

+

(
δj+2 −

δj+1µj+2

λ

)
vj+2 + · · ·+

(
δp+s −

δj+1µp+s

λ

)
vp+s

It follows that u1, · · · ,uj ,uj+1,vj+2 · · · ,vp+s constitute a basis for W.

(c) Hence inductively, we deduce that, after relabelling the indices of v1,v2, · · · ,vp,vp+1, · · · ,vp+s if necessary,
we obtain some basis for W over R, given by u1,u2,u3,u4,u5, · · · ,up,vp+1, · · · ,vp+s.

9. We now complete the argument for the Replacement Theorem.
Proof of Theorem (7).
Let W be a subspace of Rn over the reals. Let p, q be positive integers.
Let u1,u2, · · · ,up, t1, t2, · · · , tq ∈ W.
Suppose t1, t2, · · · , tq constitute a basis for W over the reals.
Suppose u1,u2, · · · ,up are linearly independent over the reals.

(a) We verify the inequality p ≤ q, with the help of the method of proof-by-contradiction:
• Suppose it were true that p > q. (Then p ≥ q + 1.)

[We focus on u1,u2, · · · ,uq,uq+1.]
Since u1,u2, · · · ,uq are just q column vectors amongst u1,u2, · · · ,up, it would happen that the column
vectors u1,u2, · · · ,uq would be linearly independent over the reals.
Now, by Theorem (7”), we would obtain a basis for W over the reals with u1,u2, · · · ,uq (and some q−q = 0

column vectors from amongst t1, t2, · · · , tq).
Since u1,u2, · · · ,uq constituted a basis for W over the reals and uq+1 belongs to W, it would happen that
uq+1 would be a linear combination of u1,u2, · · · ,uq over the reals.
But this is impossible because u1,u2, · · · ,uq,uq+1 are linearly independent over the reals.

(b) Now we have verified that p ≤ q. Write s = q − p.
According to Theorem (7”), u1,u2, · · · ,up, and some s column vectors amongst v1,v2, · · · ,vp+s together,
constitute a basis of W over the reals.

10. We now apply the Replacement Theorem to prove several results.
Theorem (3). (Uniqueness of ‘size’ of various bases of the same subspace of Rn over the reals.)
Any two bases for a subspace of Rn over the reals have the same number of column vectors.
Theorem (6).
Rn is the only n-dimensional subspace of Rn over the reals.
Theorem (8).
Let V be a q-dimensional subspace of Rn over the reals.
The statements below hold:—

(a) Let v1,v2, · · · ,vℓ ∈ V. Suppose v1,v2, · · · ,vℓ are linearly independent over the reals.
Then ℓ ≤ q.

(b) For each positive integer k, any q + k column vectors belonging to V are linearly dependent over the reals.
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Theorem (9).
Let W be a q-dimensional subspace of Rn over the reals.
Let u1,u2, · · · ,up ∈ W.
Suppose u1,u2, · · · ,up are linearly independent over the reals.
Then:—

(a) the inequality p ≤ q holds, and
(b) there is some basis for W over real constituted by u1,u2, · · · ,up, and some q − p column vectors belonging to

W.

11. Proof of Theorem (3).
[The idea in the argument is the same as that for Theorem (7).]
Let V be a subspace of Rn over the reals.
When V = {0n}, the empty set is its one and only one basis, and there is nothing to prove here.
From now on we suppose V is not the zero subspace of Rn over Rn.
Suppose x1,x2, · · · ,xp constitute a basis for V over the reals.
Also suppose y1,y2, · · · ,yp′ also constitute a basis for V over the reals.

We verify that p = p′:—

• Suppose it were true that p ̸= p′.
Without loss of generality, assume p < p′. Note that p+ 1 ≤ p′.
[We focus on y1,y2, · · · ,yp,yp+1.]
By assumption, y1,y2, · · · ,yp,yp+1, · · · ,yp+s constitute a basis for V over the reals.
Then y1,y2, · · · ,yp are linearly independent over the reals.
Recall that by assumption x1,x2, · · · ,xp constitute a basis for V over the reals.
Therefore, by the Replacement Theorem, we obtain some basis for V over the reals, given by y1,y2, · · · ,yp,
(and some p− p = 0 column vectors from amongst x1,x2, · · · ,xp).
Since y1,y2, · · · ,yp constitute a basis for V over the reals and yp+1 belongs to V, the column yp+1 is a linear
combination of y1,y2, · · · ,yp over the reals.
But this is impossible because y1,y2, · · · ,yp,yp+1 are linearly independent over the reals.
Therefore it would be impossible for p < p′ to hold.
[Modifying the argument above, we also show that it is impossible for p′ < p to hold.]
Hence p = p′ in the first place.

12. Proof of Theorem (6).
We are going to prove the statement that reads:—

• ‘If W is an n-dimensional subspace of Rn over the reals then W = Rn.’

Let W be a subspace of Rn over the reals. Suppose that dim(W) = n.
By definition, there is some basis for W over the reals with n column vectors with n real entries, say, v1,v2, · · · ,vn.
They are n linearly independent column vectors, belonging to Rn.

Note that e
(n)
1 , e

(n)
2 , · · · , e(n)n constitute some basis for Rn.

Then by the Replacement Theorem, v1,v2, · · · ,vn, (and some n−n = 0 column vectors from amongst e(n)1 , e
(n)
2 , · · · , e(n)n ,)

constitute a basis for Rn over the reals.
It follows that Rn = Span ({v1,v2, · · · ,vn}) = W.

13. Proof of Theorem (8).
Let V be a q-dimensional subspace of Rn over the reals.
By assumption, we may pick some basis for V over the reals with q column vectors, say, t1, t2, · · · , tq.

(a) Let v1,v2, · · · ,vℓ ∈ V.
Suppose v1,v2, · · · ,vℓ are linearly independent over the reals.
Then by the Replacement Theorem, ℓ ≤ q.
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(b) What we have just verified (under the standing assumption that V is a q-dimensional subspace of Rn over the
reals’) is that:—
(⋆) For any positive integer ℓ, for any v1,v2, · · · ,vℓ ∈ V, if v1,v2, · · · ,vℓ are linearly independent over the

reals then ℓ ≤ q.
By a purely logical consideration, we may re-formulate (⋆) as:—
(⋆′) For any positive integer m, for any y1,y2, · · · ,ym ∈ V, if m > q then y1,y2, · · · ,ym are linearly dependent

over the reals.
The statement (⋆′′) is a re-formulation of (⋆′):—
(⋆′′) For each positive integer k, any q+ k column vectors belonging to V are linearly dependent over the reals.

14. Proof of Theorem (9).
Let W be a q-dimensional subspace of Rn over the reals.
Let u1,u2, · · · ,up ∈ W.
Suppose u1,u2, · · · ,up are linearly independent over the reals.
By assumption, we may pick some basis of W over the reals with q column vectors with n real entries, say,
t1, t2, · · · , tq.
Then, by the Replacement Theorem, it follows that:—

(a) the inequality p ≤ q holds, and
(b) there is some basis for W over real constituted by u1,u2, · · · ,up, and some q−p column vectors from amongst

t1, t2, · · · , tq, which belong to W.
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