4.5.1 Appendix: Proofs of basic theoretical results concerned with bases and dimensions for general subspaces of column vectors.

0 . The material in this appendix is supplementary.

1. We have introduced these results:-

Theorem (1). (Upper bound of number of column vectors in a basis for a subspace of $\mathbb{R}^{n}$ over the reals.)
Every basis for any subspace of $\mathbb{R}^{n}$ over the reals has at most $n$ column vectors.
Theorem (2). (Existence of basis for an arbitrary non-zero subspace of $\mathbb{R}^{n}$ over the reals.)
Suppose $\mathcal{V}$ is a non-zero subspace of $\mathbb{R}^{n}$ over the reals. Then there is a basis for $\mathcal{V}$ over the reals which consists of at least one and at most $n$ column vectors with $n$ real entries.
2. We are going to give a proof for Theorem (2). In its argument, two results on linear dependence and linear independence that we have learnt earlier will play a crucial role. They are Lemma ( $*$ ) and Lemma ( $* *$ ).
Lemma (*).
Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}, \mathbf{v} \in \mathbb{R}^{n}$.
Suppose $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}$ are linearly independent over the reals.
Then the statements below are logically equivalent:-
$\left(*_{1}\right) \mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}, \mathbf{v}$ are linearly independent over the reals.
$\left(*_{2}\right) \mathbf{v}$ is not a linear combination of $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}$ over the reals.
Lemma ( $* *$ ).
Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{\ell} \in \mathbb{R}^{n}$. Suppose $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{\ell}$ are linearly independent over the reals. Then $\ell \leq n$.
Remark. Recall that Lemma ( $* *$ ) is essentially what Theorem (1) is about.

## 3. Proof of Theorem (2).

Suppose $\mathcal{V}$ is a non-zero subspace of $\mathbb{R}^{n}$ over the reals.
(a) By assumption we may pick some $\mathbf{u}_{1} \in \mathcal{V}$ so that $\Pi_{1} \neq \mathbf{0}_{n}$.
$\mathbf{u}_{1}$ is linearly independent over the reals.
If every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}$ over the reals, then $\mathbf{u}_{1}$ constitutes a basis for $\mathcal{V}$ over the reals.
(b) Suppose that not every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}$ over the reals.

Then we may pick some $\mathbf{u}_{2} \in \mathcal{V}$ so that $\mathbf{u}_{2}$ is not a linear combination of $\mathbf{u}_{1}$ over the reals.
By Lemma $(*), \mathbf{u}_{1}, \mathbf{u}_{2}$ are linearly independent over the reals.
If every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ over the reals, then $\mathbf{u}_{1}, \mathbf{u}_{2}$ constitute a basis for $\mathcal{V}$ over the reals.
(c) Suppose that not every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ over the reals.

Then we may pick some $\mathbf{u}_{3} \in \mathcal{V}$ so that $\mathbf{u}_{3}$ is not a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ over the reals.
By Lemma $(*), \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly independent over the reals.
If every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ over the reals, then $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ constitute a basis for $\mathcal{V}$ over the reals.
(d) Suppose $j$ is any one integer greater than $j$.

Under the assumption that not every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j-1}$ over the reals, we may pick some $\mathbf{u}_{j} \in \mathcal{V}$ so that $\mathbf{u}_{j}$ is not a linear combination of $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j-1}$ over the reals. By Lemma $(*)$, these same column vectors $\mathbf{u}_{1}, \cdots \mathbf{u}_{j-1}, \mathbf{u}_{j}$ are linearly independent over the reals.
(e) We have obtained, in succession, some sequence of column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \cdots \in \mathcal{V}$, which are linearly independent vectors in $\mathbb{R}^{n}$.
By Lemma $(* *)$, this sequence terminates at $\mathbf{u}_{p}$, for some integer $p \leq n$.
It is then necessarily true that every column vector belonging to $\mathcal{V}$ is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ over the reals; (otherwise, we could repeat the construction to obtain $\mathbf{u}_{p+1}$ ).
It follows that the $p$ vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ constitute a basis for $\mathcal{V}$ over the reals.
4. We now proceed to prove the Replacement Theorem:-

## Theorem (7). (Replacement Theorem.)

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$ over the reals. Let $p, q$ be positive integers.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}, \mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q} \in \mathcal{W}$.
Suppose $\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}$ constitute a basis for $\mathcal{W}$ over the reals.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
Then:-
(a) the inequality $p \leq q$ holds, and
(b) $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$, and some $q-p$ column vectors amongst $\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}$ together, constitute a basis of $\mathcal{W}$ over the reals.
5. To prepare the way for an argument for Theorem (7), we prove two weaker results first.

## Lemma ( $\mathbf{7}^{\prime}$ ). (Baby version of Replacement Theorem.)

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$ over the reals. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ constitute a basis for $\mathcal{W}$ over the reals.
Let $\mathbf{u} \in \mathbb{R}^{n}$. Suppose $\mathbf{u} \neq \mathbf{0}_{n}$, and $\mathbf{u}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ over the reals.
Then, the column vector $\mathbf{u}$ and some $k-1$ column vectors amongst $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ together, constitutes a basis of $\mathcal{W}$ over the reals.
6. Proof of Lemma ( $7^{\prime}$ ).

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ constitute a basis for $\mathcal{W}$ over the reals.
Let $\mathbf{u} \in \mathbb{R}^{n}$. Suppose $\mathbf{u} \neq \mathbf{0}_{n}$, and $\mathbf{u}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ over the reals.
By assumption, there exist some $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k} \in \mathbb{R}$ such that $\mathbf{u}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}$.
By assumption $\mathbf{u} \neq \mathbf{0}_{n}$. Then at least one of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ is non-zero.
Without loss of generality, suppose $\alpha_{1} \neq 0$.
(Otherwise, choose the first $\ell$ for which $\alpha_{\ell}$ is non-zero. Then re-label $\alpha_{1}, \mathbf{v}_{1}$ as $\alpha_{\ell}, \mathbf{v}_{\ell}$ respectively, and $\alpha_{\ell}, \mathbf{v}_{\ell}$ as $\alpha_{1}, \mathbf{v}_{1}$ respectively.)

We verify that $\mathbf{u}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}$ constitute a basis for $\mathcal{W}$ over the reals:

- [We verify (BL): ' $\mathbf{u}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}$ are linearly independent over the reals.']

Pick any $\beta, \gamma_{2}, \gamma_{3}, \cdots, \gamma_{k} \in \mathbb{R}$.
Suppose $\beta \mathbf{u}+\gamma_{2} \mathbf{v}_{2}+\gamma_{3} \mathbf{v}_{3}+\cdots+\gamma_{k} \mathbf{v}_{k}=\mathbf{0}_{n}$.
Then

$$
\begin{aligned}
\mathbf{0}_{n} & =\beta\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}\right)+\gamma_{2} \mathbf{v}_{2}+\gamma_{3} \mathbf{v}_{3}+\cdots+\gamma_{k} \mathbf{v}_{k} \\
& =\beta \alpha_{1} \mathbf{v}_{1}+\left(\beta \alpha_{2}+\gamma_{2}\right) \mathbf{v}_{2}+\left(\beta \alpha_{3}+\gamma_{3}\right) \mathbf{v}_{3}+\cdots+\left(\beta \alpha_{k}+\gamma_{k}\right) \mathbf{v}_{k}
\end{aligned}
$$

By assumption $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are linearly independent over the reals.
Then

$$
\beta \alpha_{1}=0=\beta \alpha_{2}+\gamma_{2}=\beta \alpha_{3}+\gamma_{3}=\cdots=\beta \alpha_{k}+\gamma_{k}
$$

Recall that $\alpha_{1} \neq 0$. Then since $\beta \alpha_{1}=0$, we have $\beta=0$.
Therefore $\gamma_{2}=\gamma_{3}=\cdots=\gamma_{k}=0$ also.
It follows that $\mathbf{u}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}$ are linearly independent over the reals.

- [We verify (BS): 'Every column vector belonging to $\mathcal{W}$ is a linear combination of $\mathbf{u}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}$ over the reals.']
Pick any $\mathrm{x} \in \mathbb{R}^{n}$. Suppose $\mathrm{x} \in \mathcal{W}$.
By assumption, $\mathbf{x}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}$ over the reals.
Then there exist some $\delta_{1}, \delta_{2}, \cdots, \delta_{k} \in \mathbb{R}$ such that $\mathbf{x}=\delta_{1} \mathbf{v}_{1}+\delta_{2} \mathbf{v}_{2}+\cdots+\delta_{k} \mathbf{v}_{k}$.
Now recall that $\mathbf{u}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}$.
Then $\mathbf{v}_{1}=\frac{1}{\alpha_{1}} \mathbf{u}-\frac{\alpha_{2}}{\alpha_{1}} \mathbf{v}_{2}-\frac{\alpha_{3}}{\alpha_{1}} \mathbf{v}_{3}-\cdots-\frac{\alpha_{k}}{\alpha_{1}} \mathbf{v}_{k}$.
Therefore, for the same $\mathbf{x}$, we have

$$
\begin{aligned}
\mathbf{x} & =\delta_{1}\left(\frac{1}{\alpha_{1}} \mathbf{u}-\frac{\alpha_{2}}{\alpha_{1}} \mathbf{v}_{2}-\frac{\alpha_{3}}{\alpha_{1}} \mathbf{v}_{3}-\cdots-\frac{\alpha_{k}}{\alpha_{1}} \mathbf{v}_{k}\right)+\delta_{2} \mathbf{v}_{2}+\cdots+\delta_{k} \mathbf{v}_{k} \\
& =\frac{\delta_{1}}{\alpha_{1}} \mathbf{u}+\left(\delta_{2}-\frac{\delta_{1} \alpha_{2}}{\alpha_{1}}\right) \mathbf{v}_{2}+\left(\delta_{3}-\frac{\delta_{1} \alpha_{3}}{\alpha_{1}}\right) \mathbf{v}_{3}+\cdots+\left(\delta_{k}-\frac{\delta_{1} \alpha_{k}}{\alpha_{1}}\right) \mathbf{v}_{k}
\end{aligned}
$$

It follows that $\mathbf{u}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{k}$ constitute a basis for $\mathcal{W}$ over the reals.

## 7. Theorem ( $7 \times$ ). (Weaker version of Replacement Theorem.)

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$ over the reals. Let $p$ be a positive integer, and $s$ be a non-negative integer.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s} \in \mathcal{W}$.
Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ constitute a basis for $\mathcal{W}$ over the reals.
Further suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
Then, $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$, and some $s$ column vectors amongst $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ together, constitute a basis of $\mathcal{W}$ over the reals.
8. Proof of Theorem ( 7 ").

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$ over the reals. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ constitute a basis for $\mathcal{W}$.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p} \in \mathcal{W}$. Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
(a) $\mathbf{u}_{1}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p+s}$ over reals. Moreover, $\mathbf{u}_{1} \neq \mathbf{0}_{n}$. (Why?)

We apply Lemma ( $7^{\prime}$ ):-
After relabelling the indices of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p+s}$ if necessary, we obtain some base for $\mathcal{W}$ over the reals, given by $\mathbf{u}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{p}, \mathbf{v}_{p+1} \cdots, \mathbf{v}_{p+s}$.
(b) Suppose $1 \leq j<p$, and suppose that after relabelling the indices of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p+s}$ if necessary, we have obtained some basis for $\mathcal{W}$ over the reals, given by $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{v}_{j+1}, \cdots, \mathbf{v}_{p+s}$.
i. By the definition of the notion of basis, $\mathbf{u}_{j+1}$ is a linear combination of $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{v}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ over the reals.
Then there exist some $\kappa_{1}, \cdots, \kappa_{j}, \lambda, \mu_{j+2}, \cdots, \cdots, \mu_{p+s} \in \mathbb{R}$ such that

$$
\mathbf{u}_{j+1}=\kappa_{1} \mathbf{u}_{1}+\cdots+\kappa_{j} \mathbf{u}_{j}+\lambda \mathbf{v}_{j+1}+\mu_{j+2} \mathbf{v}_{j+2}+\cdots+\mu_{p+s} \mathbf{v}_{p+s}
$$

ii. Note that $\lambda, \mu_{j+2}, \cdots, \cdots, \mu_{p+s}$ are not all zero. Justification:-

* Suppose $\lambda, \mu_{j+2}, \cdots, \cdots, \mu_{p+s}$ were all zero.

Then the equality $\mathbf{u}_{j+1}=\kappa_{1} \mathbf{u}_{1}+\kappa_{2} \mathbf{u}_{2}+\cdots+\kappa_{j} \mathbf{u}_{j}$ would hold.
Such an equality is impossible because $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are assumed to be linearly independent over the reals.
iii. Without loss of generality, suppose $\lambda \neq 0$.

We verify that $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{u}_{j+1}, \mathbf{v}_{j+2} \cdots, \mathbf{v}_{p+s}$ constitute a basis for $V$ :

- [We verify (BL): ' $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ are linearly independent over the reals.']

Pick any $\alpha_{1}, \cdots, \alpha_{j}, \beta, \gamma_{j+2}, \cdots, \gamma_{p+s} \in \mathbb{R}$.
Suppose $\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{j} \mathbf{u}_{j}+\beta \mathbf{u}_{j+1}+\gamma_{j+2} \mathbf{v}_{j+2}+\cdots+\gamma_{p+s} \mathbf{v}_{p+s}=\mathbf{0}_{n}$.
Then

$$
\begin{aligned}
& \mathbf{0}_{n}= \alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{j} \mathbf{u}_{j} \\
& \quad \quad+\beta\left(\kappa_{1} \mathbf{u}_{1}+\cdots+\kappa_{j} \mathbf{u}_{j}+\lambda \mathbf{v}_{j+1}+\mu_{j+2} \mathbf{v}_{j+2}+\cdots+\mu_{p+s} \mathbf{v}_{p+s}\right) \\
& \quad \quad \quad+\gamma_{j+2} \mathbf{v}_{j+2}+\cdots+\gamma_{p+s} \mathbf{v}_{p+s} \\
& \quad\left(\beta \kappa_{1}+\alpha_{1}\right) \mathbf{u}_{1}+\cdots+\left(\beta \kappa_{j}+\alpha_{j}\right) \mathbf{u}_{j}+\beta \lambda \mathbf{v}_{j+1}+\left(\beta \mu_{j+2}+\gamma_{j+2}\right) \mathbf{v}_{j+2}+\cdots+\left(\beta \mu_{p+s}+\gamma_{p+s}\right) \mathbf{v}_{p+s}
\end{aligned}
$$

Note that $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{v}_{j+1}, \cdots, \mathbf{v}_{p+s}$ are linearly independent. Then

$$
\beta \lambda=0=\beta \kappa_{1}+\alpha_{1}=\cdots=\beta \kappa_{j}+\alpha_{j}=\beta \mu_{j+2}+\gamma_{j+2}=\cdots=\beta \mu_{p+s}+\gamma_{p+s}
$$

Recall that $\lambda \neq 0$. Then since $\beta \lambda=0$, we have $\beta=0$.
Therefore $\alpha_{1}=\cdots=\alpha_{j}=\gamma_{j+2}=\cdots=\gamma_{p+s}=0$ also.
It follows that $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ are linearly independent over the reals.

- [We verify (BS): 'Every column vector belonging to $\mathcal{W}$ is a linear combination of $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ over the reals.']
Pick any $\mathbf{x} \in \mathbb{R}^{n}$. Suppose $\mathbf{x} \in \mathcal{W}$.
By assumption, $\mathbf{x}$ is a linear combination of $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{v}_{j+1}, \mathbf{v}_{j+2} \cdots, \mathbf{v}_{p+s}$ over the reals.
Then there exist some $\delta_{1}, \cdots, \delta_{j}, \delta_{j+1}, \delta_{j+2}, \cdots, \delta_{p+s} \in \mathbb{R}$ such that

$$
\mathbf{x}=\delta_{1} \mathbf{u}_{1}+\cdots+\delta_{j} \mathbf{u}_{j}+\delta_{j+1} \mathbf{v}_{j+1}+\delta_{j+2} \mathbf{v}_{j+2}+\cdots+\delta_{p+s} \mathbf{v}_{p+s}
$$

Now recall that

$$
\mathbf{u}_{j+1}=\kappa_{1} \mathbf{u}_{1}+\cdots+\kappa_{j} \mathbf{u}_{j}+\lambda \mathbf{v}_{j+1}+\mu_{j+2} \mathbf{v}_{j+2}+\cdots+\mu_{p+s} \mathbf{v}_{p+s}
$$

Then $\mathbf{v}_{j+1}=\frac{1}{\lambda} \mathbf{u}_{j+1}-\frac{\kappa_{1}}{\lambda} \mathbf{u}_{1}-\cdots-\frac{\kappa_{j}}{\lambda} \mathbf{u}_{j}-\frac{\mu_{j+2}}{\lambda} \mathbf{v}_{j+2}-\cdots-\frac{\mu_{p+s}}{\lambda} \mathbf{v}_{p+s}$.
Therefore, for the same $\mathbf{x}$, we have

$$
\begin{aligned}
\mathbf{x}=\delta_{1} \mathbf{u}_{1} & +\cdots+\delta_{j} \mathbf{u}_{j} \\
& +\delta_{j+1}\left(\frac{1}{\lambda} \mathbf{u}_{j+1}-\frac{\kappa_{1}}{\lambda} \mathbf{u}_{1}-\cdots-\frac{\kappa_{j}}{\lambda} \mathbf{u}_{j}-\frac{\mu_{j+2}}{\lambda} \mathbf{v}_{j+2}-\cdots-\frac{\mu_{p+s}}{\lambda} \mathbf{v}_{p+s}\right) \\
& +\delta_{j+2} \mathbf{v}_{j+2}+\cdots+\delta_{p+s} \mathbf{v}_{p+s} \\
=\left(\delta_{1}-\right. & \left.\frac{\delta_{j+1} \kappa_{1}}{\lambda}\right) \mathbf{u}_{1}+\cdots+\left(\delta_{j}-\frac{\delta_{j+1} \kappa_{j}}{\lambda}\right) \mathbf{u}_{j}+\frac{\delta_{j+1}}{\lambda} \mathbf{u}_{j+1} \\
& +\left(\delta_{j+2}-\frac{\delta_{j+1} \mu_{j+2}}{\lambda}\right) \mathbf{v}_{j+2}+\cdots+\left(\delta_{p+s}-\frac{\delta_{j+1} \mu_{p+s}}{\lambda}\right) \mathbf{v}_{p+s}
\end{aligned}
$$

It follows that $\mathbf{u}_{1}, \cdots, \mathbf{u}_{j}, \mathbf{u}_{j+1}, \mathbf{v}_{j+2} \cdots, \mathbf{v}_{p+s}$ constitute a basis for $\mathcal{W}$.
(c) Hence inductively, we deduce that, after relabelling the indices of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ if necessary, we obtain some basis for $\mathcal{W}$ over $\mathbb{R}$, given by $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \cdots, \mathbf{u}_{p}, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$.
9. We now complete the argument for the Replacement Theorem.

## Proof of Theorem (7).

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$ over the reals. Let $p, q$ be positive integers.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}, \mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q} \in \mathcal{W}$.
Suppose $\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}$ constitute a basis for $\mathcal{W}$ over the reals.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
(a) We verify the inequality $p \leq q$, with the help of the method of proof-by-contradiction:

- Suppose it were true that $p>q$. (Then $p \geq q+1$.)
[We focus on $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}, \mathbf{u}_{q+1}$.]
Since $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ are just $q$ column vectors amongst $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$, it would happen that the column vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ would be linearly independent over the reals.
Now, by Theorem ( 7 "), we would obtain a basis for $\mathcal{W}$ over the reals with $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ (and some $q-q=0$ column vectors from amongst $\left.\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}\right)$.
Since $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ constituted a basis for $\mathcal{W}$ over the reals and $\mathbf{u}_{q+1}$ belongs to $\mathcal{W}$, it would happen that $\mathbf{u}_{q+1}$ would be a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}$ over the reals.
But this is impossible because $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{q}, \mathbf{u}_{q+1}$ are linearly independent over the reals.
(b) Now we have verified that $p \leq q$. Write $s=q-p$.

According to Theorem ( 7 "), $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$, and some $s$ column vectors amongst $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p+s}$ together, constitute a basis of $\mathcal{W}$ over the reals.
10. We now apply the Replacement Theorem to prove several results.

Theorem (3). (Uniqueness of 'size' of various bases of the same subspace of $\mathbb{R}^{n}$ over the reals.)
Any two bases for a subspace of $\mathbb{R}^{n}$ over the reals have the same number of column vectors.
Theorem (6).
$\mathbb{R}^{n}$ is the only $n$-dimensional subspace of $\mathbb{R}^{n}$ over the reals.
Theorem (8).
Let $\mathcal{V}$ be a $q$-dimensional subspace of $\mathbb{R}^{n}$ over the reals.
The statements below hold:-
(a) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\ell} \in \mathcal{V}$. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\ell}$ are linearly independent over the reals. Then $\ell \leq q$.
(b) For each positive integer $k$, any $q+k$ column vectors belonging to $\mathcal{V}$ are linearly dependent over the reals.

## Theorem (9).

Let $\mathcal{W}$ be a $q$-dimensional subspace of $\mathbb{R}^{n}$ over the reals.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p} \in \mathcal{W}$.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
Then:-
(a) the inequality $p \leq q$ holds, and
(b) there is some basis for $\mathcal{W}$ over real constituted by $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$, and some $q-p$ column vectors belonging to $\mathcal{W}$.

## 11. Proof of Theorem (3).

[The idea in the argument is the same as that for Theorem (7).]
Let $\mathcal{V}$ be a subspace of $\mathbb{R}^{n}$ over the reals.
When $\mathcal{V}=\left\{\mathbf{0}_{n}\right\}$, the empty set is its one and only one basis, and there is nothing to prove here.
From now on we suppose $\mathcal{V}$ is not the zero subspace of $\mathbb{R}^{n}$ over $\mathbb{R}^{n}$.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{p}$ constitute a basis for $\mathcal{V}$ over the reals.
Also suppose $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p^{\prime}}$ also constitute a basis for $\mathcal{V}$ over the reals.
We verify that $p=p^{\prime}$ :-

- Suppose it were true that $p \neq p^{\prime}$.

Without loss of generality, assume $p<p^{\prime}$. Note that $p+1 \leq p^{\prime}$.
[We focus on $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}, \mathbf{y}_{p+1}$.]
By assumption, $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}, \mathbf{y}_{p+1}, \cdots, \mathbf{y}_{p+s}$ constitute a basis for $\mathcal{V}$ over the reals.
Then $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}$ are linearly independent over the reals.
Recall that by assumption $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{p}$ constitute a basis for $\mathcal{V}$ over the reals.
Therefore, by the Replacement Theorem, we obtain some basis for $\mathcal{V}$ over the reals, given by $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}$, (and some $p-p=0$ column vectors from amongst $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{p}$ ).
Since $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}$ constitute a basis for $\mathcal{V}$ over the reals and $\mathbf{y}_{p+1}$ belongs to $\mathcal{V}$, the column $\mathbf{y}_{p+1}$ is a linear combination of $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}$ over the reals.
But this is impossible because $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{p}, \mathbf{y}_{p+1}$ are linearly independent over the reals.
Therefore it would be impossible for $p<p^{\prime}$ to hold.
[Modifying the argument above, we also show that it is impossible for $p^{\prime}<p$ to hold.]
Hence $p=p^{\prime}$ in the first place.

## 12. Proof of Theorem (6).

We are going to prove the statement that reads:-

- 'If $\mathcal{W}$ is an $n$-dimensional subspace of $\mathbb{R}^{n}$ over the reals then $\mathcal{W}=\mathbb{R}^{n}$.'

Let $\mathcal{W}$ be a subspace of $\mathbb{R}^{n}$ over the reals. Suppose that $\operatorname{dim}(\mathcal{W})=n$.
By definition, there is some basis for $\mathcal{W}$ over the reals with $n$ column vectors with $n$ real entries, say, $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$. They are $n$ linearly independent column vectors, belonging to $\mathbb{R}^{n}$.
Note that $\mathbf{e}_{1}^{(n)}, \mathbf{e}_{2}^{(n)}, \cdots, \mathbf{e}_{n}^{(n)}$ constitute some basis for $\mathbb{R}^{n}$.
Then by the Replacement Theorem, $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$, (and some $n-n=0$ column vectors from amongst $\mathbf{e}_{1}^{(n)}, \mathbf{e}_{2}^{(n)}, \cdots, \mathbf{e}_{n}^{(n)}$,) constitute a basis for $\mathbb{R}^{n}$ over the reals.
It follows that $\mathbb{R}^{n}=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}\right)=\mathcal{W}$.
13. Proof of Theorem (8).

Let $\mathcal{V}$ be a $q$-dimensional subspace of $\mathbb{R}^{n}$ over the reals.
By assumption, we may pick some basis for $\mathcal{V}$ over the reals with $q$ column vectors, say, $\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}$.
(a) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\ell} \in \mathcal{V}$.

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\ell}$ are linearly independent over the reals.
Then by the Replacement Theorem, $\ell \leq q$.
(b) What we have just verified (under the standing assumption that $\mathcal{V}$ is a $q$-dimensional subspace of $\mathbb{R}^{n}$ over the reals') is that:-
( $\star$ ) For any positive integer $\ell$, for any $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\ell} \in \mathcal{V}$, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\ell}$ are linearly independent over the reals then $\ell \leq q$.
By a purely logical consideration, we may re-formulate ( $\star$ ) as:-
$\left(\star^{\prime}\right)$ For any positive integer $m$, for any $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{m} \in \mathcal{V}$, if $m>q$ then $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{m}$ are linearly dependent over the reals.
The statement $\left(\star^{\prime \prime}\right)$ is a re-formulation of $\left(\star^{\prime}\right)$ :-
$\left(\star^{\prime \prime}\right)$ For each positive integer $k$, any $q+k$ column vectors belonging to $\mathcal{V}$ are linearly dependent over the reals.

## 14. Proof of Theorem (9).

Let $\mathcal{W}$ be a $q$-dimensional subspace of $\mathbb{R}^{n}$ over the reals.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p} \in \mathcal{W}$.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
By assumption, we may pick some basis of $\mathcal{W}$ over the reals with $q$ column vectors with $n$ real entries, say, $\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}$.
Then, by the Replacement Theorem, it follows that:-
(a) the inequality $p \leq q$ holds, and
(b) there is some basis for $\mathcal{W}$ over real constituted by $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$, and some $q-p$ column vectors from amongst $\mathbf{t}_{1}, \mathbf{t}_{2}, \cdots, \mathbf{t}_{q}$, which belong to $\mathcal{W}$.

