4.5.1 Appendix: Proofs of basic theoretical results concerned with bases and dimensions for general subspaces of column vectors.

- 0. The material in this appendix is supplementary.
- 1. We have introduced these results:—

Theorem (1). (Upper bound of number of column vectors in a basis for a subspace of \mathbb{R}^n over the reals.)

Every basis for any subspace of \mathbb{R}^n over the reals has at most n column vectors.

Theorem (2). (Existence of basis for an arbitrary non-zero subspace of \mathbb{R}^n over the reals.)

Suppose \mathcal{V} is a non-zero subspace of \mathbb{R}^n over the reals. Then there is a basis for \mathcal{V} over the reals which consists of at least one and at most n column vectors with n real entries.

2. We are going to give a proof for Theorem (2). In its argument, two results on linear dependence and linear independence that we have learnt earlier will play a crucial role. They are Lemma (*) and Lemma (**).

Lemma (*).

Let $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k, \mathbf{v} \in \mathbb{R}^n$.

Suppose $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$ are linearly independent over the reals.

Then the statements below are logically equivalent:-

(*1) $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k, \mathbf{v}$ are linearly independent over the reals.

(*2) **v** is not a linear combination of $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$ over the reals.

Lemma (**).

Let $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_\ell \in \mathbb{R}^n$. Suppose $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_\ell$ are linearly independent over the reals. Then $\ell \leq n$.

Remark. Recall that Lemma (**) is essentially what Theorem (1) is about.

3. Proof of Theorem (2).

Suppose \mathcal{V} is a non-zero subspace of \mathbb{R}^n over the reals.

(a) By assumption we may pick some $\mathbf{u}_1 \in \mathcal{V}$ so that $\Box_1 \neq \mathbf{0}_n$.

 \mathbf{u}_1 is linearly independent over the reals.

If every column vector belonging to \mathcal{V} is a linear combination of \mathbf{u}_1 over the reals, then \mathbf{u}_1 constitutes a basis for \mathcal{V} over the reals.

(b) Suppose that not every column vector belonging to \mathcal{V} is a linear combination of \mathbf{u}_1 over the reals.

Then we may pick some $\mathbf{u}_2 \in \mathcal{V}$ so that \mathbf{u}_2 is not a linear combination of \mathbf{u}_1 over the reals.

By Lemma (*), \mathbf{u}_1 , \mathbf{u}_2 are linearly independent over the reals.

If every column vector belonging to \mathcal{V} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ over the reals, then $\mathbf{u}_1, \mathbf{u}_2$ constitute a basis for \mathcal{V} over the reals.

(c) Suppose that not every column vector belonging to \mathcal{V} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ over the reals.

Then we may pick some $\mathbf{u}_3 \in \mathcal{V}$ so that \mathbf{u}_3 is not a linear combination of $\mathbf{u}_1, \mathbf{u}_2$ over the reals.

By Lemma (*), $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent over the reals.

If every column vector belonging to \mathcal{V} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ over the reals, then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for \mathcal{V} over the reals.

- (d) Suppose j is any one integer greater than j.
 Under the assumption that not every column vector belonging to V is a linear combination of u₁, ..., u_{j-1} over the reals, we may pick some u_j ∈ V so that u_j is not a linear combination of u₁, ..., u_{j-1} over the reals. By Lemma (*), these same column vectors u₁, ... u_{j-1}, u_j are linearly independent over the reals.
- (e) We have obtained, in succession, some sequence of column vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots \in \mathcal{V}$, which are linearly independent vectors in \mathbb{R}^n .

By Lemma (**), this sequence terminates at \mathbf{u}_p , for some integer $p \leq n$.

It is then necessarily true that every column vector belonging to \mathcal{V} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ over the reals; (otherwise, we could repeat the construction to obtain \mathbf{u}_{p+1}).

It follows that the p vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for \mathcal{V} over the reals.

4. We now proceed to prove the Replacement Theorem:—

Theorem (7). (Replacement Theorem.)

Let \mathcal{W} be a subspace of \mathbb{R}^n over the reals. Let p, q be positive integers.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p, \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q \in \mathcal{W}$.

Suppose $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$ constitute a basis for \mathcal{W} over the reals.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent over the reals.

Then:---

- (a) the inequality $p \leq q$ holds, and
- (b) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$, and some q p column vectors amongst $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$ together, constitute a basis of \mathcal{W} over the reals.
- 5. To prepare the way for an argument for Theorem (7), we prove two weaker results first.

Lemma (7'). (Baby version of Replacement Theorem.)

Let \mathcal{W} be a subspace of \mathbb{R}^n over the reals. Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ constitute a basis for \mathcal{W} over the reals.

Let $\mathbf{u} \in \mathbb{R}^n$. Suppose $\mathbf{u} \neq \mathbf{0}_n$, and \mathbf{u} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ over the reals.

Then, the column vector \mathbf{u} and some k-1 column vectors amongst $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ together, constitutes a basis of \mathcal{W} over the reals.

6. Proof of Lemma (7').

Let \mathcal{W} be a subspace of \mathbb{R}^n . Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ constitute a basis for \mathcal{W} over the reals.

Let $\mathbf{u} \in \mathbb{R}^n$. Suppose $\mathbf{u} \neq \mathbf{0}_n$, and \mathbf{u} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ over the reals.

By assumption, there exist some $\alpha_1, \alpha_2, \cdots, \alpha_k \in \mathbb{R}$ such that $\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k$.

By assumption $\mathbf{u} \neq \mathbf{0}_n$. Then at least one of $\alpha_1, \alpha_2, \cdots, \alpha_k$ is non-zero.

Without loss of generality, suppose $\alpha_1 \neq 0$.

(Otherwise, choose the first ℓ for which α_{ℓ} is non-zero. Then re-label α_1, \mathbf{v}_1 as $\alpha_{\ell}, \mathbf{v}_{\ell}$ respectively, and $\alpha_{\ell}, \mathbf{v}_{\ell}$ as α_1, \mathbf{v}_1 respectively.)

We verify that $\mathbf{u}, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_k$ constitute a basis for \mathcal{W} over the reals:

• [We verify (BL): ' $\mathbf{u}, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_k$ are linearly independent over the reals.'] Pick any $\beta, \gamma_2, \gamma_3, \cdots, \gamma_k \in \mathbb{R}$. Suppose $\beta \mathbf{u} + \gamma_2 \mathbf{v}_2 + \gamma_3 \mathbf{v}_3 + \cdots + \gamma_k \mathbf{v}_k = \mathbf{0}_n$. Then

$$\mathbf{0}_{n} = \beta(\alpha_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \dots + \alpha_{k}\mathbf{v}_{k}) + \gamma_{2}\mathbf{v}_{2} + \gamma_{3}\mathbf{v}_{3} + \dots + \gamma_{k}\mathbf{v}_{k}$$

$$= \beta\alpha_{1}\mathbf{v}_{1} + (\beta\alpha_{2} + \gamma_{2})\mathbf{v}_{2} + (\beta\alpha_{3} + \gamma_{3})\mathbf{v}_{3} + \dots + (\beta\alpha_{k} + \gamma_{k})\mathbf{v}_{k}$$

By assumption $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly independent over the reals. Then

$$\beta \alpha_1 = 0 = \beta \alpha_2 + \gamma_2 = \beta \alpha_3 + \gamma_3 = \dots = \beta \alpha_k + \gamma_k.$$

Recall that $\alpha_1 \neq 0$. Then since $\beta \alpha_1 = 0$, we have $\beta = 0$.

Therefore $\gamma_2 = \gamma_3 = \cdots = \gamma_k = 0$ also.

It follows that $\mathbf{u}, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_k$ are linearly independent over the reals.

- [We verify (BS): 'Every column vector belonging to W is a linear combination of $\mathbf{u}, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_k$ over the reals.']
 - Pick any $\mathbf{x} \in \mathbb{R}^n$. Suppose $\mathbf{x} \in \mathcal{W}$.

By assumption, **x** is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_k$ over the reals.

Then there exist some $\delta_1, \delta_2, \cdots, \delta_k \in \mathbb{R}$ such that $\mathbf{x} = \delta_1 \mathbf{v}_1 + \delta_2 \mathbf{v}_2 + \cdots + \delta_k \mathbf{v}_k$.

Now recall that $\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$.

Then
$$\mathbf{v}_1 = \frac{1}{\alpha_1}\mathbf{u} - \frac{\alpha_2}{\alpha_1}\mathbf{v}_2 - \frac{\alpha_3}{\alpha_1}\mathbf{v}_3 - \dots - \frac{\alpha_k}{\alpha_1}\mathbf{v}_k$$

Therefore, for the same $\mathbf{x},$ we have

$$\mathbf{x} = \delta_1 \left(\frac{1}{\alpha_1} \mathbf{u} - \frac{\alpha_2}{\alpha_1} \mathbf{v}_2 - \frac{\alpha_3}{\alpha_1} \mathbf{v}_3 - \dots - \frac{\alpha_k}{\alpha_1} \mathbf{v}_k \right) + \delta_2 \mathbf{v}_2 + \dots + \delta_k \mathbf{v}_k$$
$$= \frac{\delta_1}{\alpha_1} \mathbf{u} + \left(\delta_2 - \frac{\delta_1 \alpha_2}{\alpha_1} \right) \mathbf{v}_2 + \left(\delta_3 - \frac{\delta_1 \alpha_3}{\alpha_1} \right) \mathbf{v}_3 + \dots + \left(\delta_k - \frac{\delta_1 \alpha_k}{\alpha_1} \right) \mathbf{v}_k$$

It follows that $\mathbf{u}, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_k$ constitute a basis for \mathcal{W} over the reals.

7. Theorem (7"). (Weaker version of Replacement Theorem.)

Let \mathcal{W} be a subspace of \mathbb{R}^n over the reals. Let p be a positive integer, and s be a non-negative integer.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s} \in \mathcal{W}.$

Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ constitute a basis for \mathcal{W} over the reals.

Further suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent over the reals.

Then, $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$, and some *s* column vectors amongst $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ together, constitute a basis of \mathcal{W} over the reals.

8. Proof of Theorem (7").

Let \mathcal{W} be a subspace of \mathbb{R}^n over the reals. Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ constitute a basis for \mathcal{W} .

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p \in \mathcal{W}$. Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent over the reals.

(a) \mathbf{u}_1 is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{p+s}$ over reals. Moreover, $\mathbf{u}_1 \neq \mathbf{0}_n$. (Why?)

We apply Lemma (7'):—

After relabelling the indices of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{p+s}$ if necessary, we obtain some base for \mathcal{W} over the reals, given by $\mathbf{u}_1, \mathbf{v}_2, \mathbf{v}_3, \cdots, \mathbf{v}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$.

(b) Suppose $1 \leq j < p$, and suppose that after relabelling the indices of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{p+s}$ if necessary, we have obtained some basis for \mathcal{W} over the reals, given by $\mathbf{u}_1, \cdots, \mathbf{u}_j, \mathbf{v}_{j+1}, \cdots, \mathbf{v}_{p+s}$.

i. By the definition of the notion of basis, \mathbf{u}_{j+1} is a linear combination of $\mathbf{u}_1, \cdots, \mathbf{u}_j, \mathbf{v}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ over the reals. Then there exist some $\kappa_1, \cdots, \kappa_j, \lambda, \mu_{j+2}, \cdots, \cdots, \mu_{p+s} \in \mathbb{R}$ such that

 $\mathbf{u}_{i+1} = \kappa_1 \mathbf{u}_1 + \dots + \kappa_i \mathbf{u}_i + \lambda \mathbf{v}_{i+1} + \mu_{i+2} \mathbf{v}_{i+2} + \dots + \mu_{p+s} \mathbf{v}_{p+s}.$

ii. Note that $\lambda, \mu_{j+2}, \dots, \dots, \mu_{p+s}$ are not all zero. Justification:—

- * Suppose $\lambda, \mu_{j+2}, \dots, \dots, \mu_{p+s}$ were all zero. Then the equality $\mathbf{u}_{j+1} = \kappa_1 \mathbf{u}_1 + \kappa_2 \mathbf{u}_2 + \dots + \kappa_j \mathbf{u}_j$ would hold. Such an equality is impossible because $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p$ are assumed to be linearly independent over the reals.
- iii. Without loss of generality, suppose $\lambda \neq 0$.
 - We verify that $\mathbf{u}_1, \dots, \mathbf{u}_j, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \dots, \mathbf{v}_{p+s}$ constitute a basis for V:
 - [We verify (BL): ' $\mathbf{u}_1, \dots, \mathbf{u}_j, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \dots, \mathbf{v}_{p+s}$ are linearly independent over the reals.'] Pick any $\alpha_1, \dots, \alpha_j, \beta, \gamma_{j+2}, \dots, \gamma_{p+s} \in \mathbb{R}$. Suppose $\alpha_1 \mathbf{u}_1 + \dots + \alpha_j \mathbf{u}_j + \beta \mathbf{u}_{j+1} + \gamma_{j+2} \mathbf{v}_{j+2} + \dots + \gamma_{p+s} \mathbf{v}_{p+s} = \mathbf{0}_n$. Then
 - $\mathbf{0}_n = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_j \mathbf{u}_j$

+
$$\beta(\kappa_1 \mathbf{u}_1 + \dots + \kappa_j \mathbf{u}_j + \lambda \mathbf{v}_{j+1} + \mu_{j+2} \mathbf{v}_{j+2} + \dots + \mu_{p+s} \mathbf{v}_{p+s})$$

+ $\gamma_{j+2} \mathbf{v}_{j+2} + \dots + \gamma_{p+s} \mathbf{v}_{p+s}$

$$= (\beta\kappa_1 + \alpha_1)\mathbf{u}_1 + \dots + (\beta\kappa_j + \alpha_j)\mathbf{u}_j + \beta\lambda\mathbf{v}_{j+1} + (\beta\mu_{j+2} + \gamma_{j+2})\mathbf{v}_{j+2} + \dots + (\beta\mu_{p+s} + \gamma_{p+s})\mathbf{v}_{p+s}$$

Note that $\mathbf{u}_1, \cdots, \mathbf{u}_j, \mathbf{v}_{j+1}, \cdots, \mathbf{v}_{p+s}$ are linearly independent. Then

$$\beta\lambda = 0 = \beta\kappa_1 + \alpha_1 = \dots = \beta\kappa_j + \alpha_j = \beta\mu_{j+2} + \gamma_{j+2} = \dots = \beta\mu_{p+s} + \gamma_{p+s}.$$

Recall that $\lambda \neq 0$. Then since $\beta \lambda = 0$, we have $\beta = 0$.

Therefore $\alpha_1 = \cdots = \alpha_j = \gamma_{j+2} = \cdots = \gamma_{p+s} = 0$ also.

It follows that $\mathbf{u}_1, \cdots, \mathbf{u}_j, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ are linearly independent over the reals.

- [We verify (BS): 'Every column vector belonging to \mathcal{W} is a linear combination of
 - $\mathbf{u}_1, \cdots, \mathbf{u}_j, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ over the reals.']

Pick any $\mathbf{x} \in \mathbb{R}^n$. Suppose $\mathbf{x} \in \mathcal{W}$.

By assumption, **x** is a linear combination of $\mathbf{u}_1, \dots, \mathbf{u}_j, \mathbf{v}_{j+1}, \mathbf{v}_{j+2}, \dots, \mathbf{v}_{p+s}$ over the reals. Then there exist some $\delta_1, \dots, \delta_j, \delta_{j+1}, \delta_{j+2}, \dots, \delta_{p+s} \in \mathbb{R}$ such that

$$\mathbf{x} = \delta_1 \mathbf{u}_1 + \dots + \delta_j \mathbf{u}_j + \delta_{j+1} \mathbf{v}_{j+1} + \delta_{j+2} \mathbf{v}_{j+2} + \dots + \delta_{p+s} \mathbf{v}_{p+s}.$$

Now recall that

$$\mathbf{u}_{j+1} = \kappa_1 \mathbf{u}_1 + \dots + \kappa_j \mathbf{u}_j + \lambda \mathbf{v}_{j+1} + \mu_{j+2} \mathbf{v}_{j+2} + \dots + \mu_{p+s} \mathbf{v}_{p+s}.$$

Then $\mathbf{v}_{j+1} = \frac{1}{\lambda} \mathbf{u}_{j+1} - \frac{\kappa_1}{\lambda} \mathbf{u}_1 - \dots - \frac{\kappa_j}{\lambda} \mathbf{u}_j - \frac{\mu_{j+2}}{\lambda} \mathbf{v}_{j+2} - \dots - \frac{\mu_{p+s}}{\lambda} \mathbf{v}_{p+s}$. Therefore, for the same \mathbf{x} , we have

$$\mathbf{x} = \delta_1 \mathbf{u}_1 + \dots + \delta_j \mathbf{u}_j + \delta_{j+1} \left(\frac{1}{\lambda} \mathbf{u}_{j+1} - \frac{\kappa_1}{\lambda} \mathbf{u}_1 - \dots - \frac{\kappa_j}{\lambda} \mathbf{u}_j - \frac{\mu_{j+2}}{\lambda} \mathbf{v}_{j+2} - \dots - \frac{\mu_{p+s}}{\lambda} \mathbf{v}_{p+s} \right) + \delta_{j+2} \mathbf{v}_{j+2} + \dots + \delta_{p+s} \mathbf{v}_{p+s} = \left(\delta_1 - \frac{\delta_{j+1}\kappa_1}{\lambda} \right) \mathbf{u}_1 + \dots + \left(\delta_j - \frac{\delta_{j+1}\kappa_j}{\lambda} \right) \mathbf{u}_j + \frac{\delta_{j+1}}{\lambda} \mathbf{u}_{j+1} + \left(\delta_{j+2} - \frac{\delta_{j+1}\mu_{j+2}}{\lambda} \right) \mathbf{v}_{j+2} + \dots + \left(\delta_{p+s} - \frac{\delta_{j+1}\mu_{p+s}}{\lambda} \right) \mathbf{v}_{p+s}$$

It follows that $\mathbf{u}_1, \cdots, \mathbf{u}_j, \mathbf{u}_{j+1}, \mathbf{v}_{j+2}, \cdots, \mathbf{v}_{p+s}$ constitute a basis for \mathcal{W} .

(c) Hence inductively, we deduce that, after relabelling the indices of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$ if necessary, we obtain some basis for \mathcal{W} over \mathbb{R} , given by $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \cdots, \mathbf{u}_p, \mathbf{v}_{p+1}, \cdots, \mathbf{v}_{p+s}$.

9. We now complete the argument for the Replacement Theorem.

Proof of Theorem (7).

Let \mathcal{W} be a subspace of \mathbb{R}^n over the reals. Let p, q be positive integers.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p, \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q \in \mathcal{W}$.

Suppose $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$ constitute a basis for \mathcal{W} over the reals.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent over the reals.

- (a) We verify the inequality $p \leq q$, with the help of the method of proof-by-contradiction:
 - Suppose it were true that p > q. (Then p ≥ q + 1.) [We focus on u₁, u₂, ..., u_q, u_{q+1}.] Since u₁, u₂, ..., u_q are just q column vectors amongst u₁, u₂, ..., u_p, it would happen that the column vectors u₁, u₂, ..., u_q would be linearly independent over the reals. Now, by Theorem (7"), we would obtain a basis for W over the reals with u₁, u₂, ..., u_q (and some q-q = 0 column vectors from amongst t₁, t₂, ..., t_q). Since u₁, u₂, ..., u_q constituted a basis for W over the reals and u_{q+1} belongs to W, it would happen that u_{q+1} would be a linear combination of u₁, u₂, ..., u_q over the reals. But this is impossible because u₁, u₂, ..., u_q, u_{q+1} are linearly independent over the reals.
- (b) Now we have verified that $p \leq q$. Write s = q p. According to Theorem (7"), $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$, and some s column vectors amongst $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{p+s}$ together, constitute a basis of \mathcal{W} over the reals.
- 10. We now apply the Replacement Theorem to prove several results.

Theorem (3). (Uniqueness of 'size' of various bases of the same subspace of \mathbb{R}^n over the reals.)

Any two bases for a subspace of \mathbb{R}^n over the reals have the same number of column vectors.

Theorem (6).

 \mathbb{R}^n is the only *n*-dimensional subspace of \mathbb{R}^n over the reals.

Theorem (8).

Let \mathcal{V} be a q-dimensional subspace of \mathbb{R}^n over the reals.

The statements below hold:----

- (a) Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_\ell \in \mathcal{V}$. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_\ell$ are linearly independent over the reals. Then $\ell \leq q$.
- (b) For each positive integer k, any q + k column vectors belonging to \mathcal{V} are linearly dependent over the reals.

Theorem (9).

Let \mathcal{W} be a q-dimensional subspace of \mathbb{R}^n over the reals.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p \in \mathcal{W}$.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent over the reals.

Then:-

- (a) the inequality $p \leq q$ holds, and
- (b) there is some basis for W over real constituted by $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$, and some q p column vectors belonging to W.

11. Proof of Theorem (3).

[The idea in the argument is the same as that for Theorem (7).]

Let \mathcal{V} be a subspace of \mathbb{R}^n over the reals.

When $\mathcal{V} = \{\mathbf{0}_n\}$, the empty set is its one and only one basis, and there is nothing to prove here.

From now on we suppose \mathcal{V} is not the zero subspace of \mathbb{R}^n over \mathbb{R}^n .

Suppose $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$ constitute a basis for \mathcal{V} over the reals.

Also suppose $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_{p'}$ also constitute a basis for \mathcal{V} over the reals.

We verify that p = p':—

• Suppose it were true that $p \neq p'$.

Without loss of generality, assume p < p'. Note that $p + 1 \le p'$.

[We focus on $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p, \mathbf{y}_{p+1}$.]

By assumption, $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p, \mathbf{y}_{p+1}, \cdots, \mathbf{y}_{p+s}$ constitute a basis for \mathcal{V} over the reals.

Then $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p$ are linearly independent over the reals.

Recall that by assumption $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$ constitute a basis for \mathcal{V} over the reals.

Therefore, by the Replacement Theorem, we obtain some basis for \mathcal{V} over the reals, given by $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p$, (and some p - p = 0 column vectors from amongst $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$).

Since $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p$ constitute a basis for \mathcal{V} over the reals and \mathbf{y}_{p+1} belongs to \mathcal{V} , the column \mathbf{y}_{p+1} is a linear combination of $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p$ over the reals.

But this is impossible because $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_p, \mathbf{y}_{p+1}$ are linearly independent over the reals.

Therefore it would be impossible for p < p' to hold.

[Modifying the argument above, we also show that it is impossible for p' < p to hold.]

Hence p = p' in the first place.

12. Proof of Theorem (6).

We are going to prove the statement that reads:—

• 'If \mathcal{W} is an *n*-dimensional subspace of \mathbb{R}^n over the reals then $\mathcal{W} = \mathbb{R}^n$.'

Let \mathcal{W} be a subspace of \mathbb{R}^n over the reals. Suppose that $\dim(\mathcal{W}) = n$.

By definition, there is some basis for \mathcal{W} over the reals with *n* column vectors with *n* real entries, say, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$.

They are *n* linearly independent column vectors, belonging to \mathbb{R}^n .

Note that $\mathbf{e}_1^{(n)}, \mathbf{e}_2^{(n)}, \cdots, \mathbf{e}_n^{(n)}$ constitute some basis for \mathbb{R}^n .

Then by the Replacement Theorem, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$, (and some n-n = 0 column vectors from amongst $\mathbf{e}_1^{(n)}, \mathbf{e}_2^{(n)}, \cdots, \mathbf{e}_n^{(n)}$,) constitute a basis for \mathbb{R}^n over the reals.

It follows that $\mathbb{R}^n = \text{Span} (\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}) = \mathcal{W}.$

13. Proof of Theorem (8).

Let \mathcal{V} be a q-dimensional subspace of \mathbb{R}^n over the reals.

By assumption, we may pick some basis for \mathcal{V} over the reals with q column vectors, say, $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$.

(a) Let $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_\ell \in \mathcal{V}$.

Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_\ell$ are linearly independent over the reals. Then by the Replacement Theorem, $\ell \leq q$.

- (b) What we have just verified (under the standing assumption that \mathcal{V} is a q-dimensional subspace of \mathbb{R}^n over the reals') is that:—
 - (*) For any positive integer ℓ , for any $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\ell} \in \mathcal{V}$, if $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\ell}$ are linearly independent over the reals then $\ell \leq q$.
 - By a purely logical consideration, we may re-formulate (\star) as:—
 - (*') For any positive integer m, for any $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_m \in \mathcal{V}$, if m > q then $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_m$ are linearly dependent over the reals.
 - The statement $(\star^{\prime\prime})$ is a re-formulation of $(\star^\prime){:}{-}{-}$
 - (\star'') For each positive integer k, any q + k column vectors belonging to \mathcal{V} are linearly dependent over the reals.

14. Proof of Theorem (9).

Let \mathcal{W} be a q-dimensional subspace of \mathbb{R}^n over the reals.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p \in \mathcal{W}$.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent over the reals.

By assumption, we may pick some basis of \mathcal{W} over the reals with q column vectors with n real entries, say, $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$.

Then, by the Replacement Theorem, it follows that:----

- (a) the inequality $p \leq q$ holds, and
- (b) there is some basis for \mathcal{W} over real constituted by $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$, and some q p column vectors from amongst $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$, which belong to \mathcal{W} .