
4.5 Dimension for subspaces of column vectors.

0. Assumed background.

• Whatever has been covered in Topics 1-3, especially:—
∗ 1.5 Linear combinations.
∗ 1.6 Linear dependence and linear independence.

• 4.1 Sets of matrices and sets of vectors.
• 4.2 Set equality (for sets of matrices and sets of vectors).
• 4.3 Subspaces of column vectors.
• 4.4 Basis for subspaces of column vectors.

Abstract. We introduce:—

• the dimension for an arbitrary subspace of Rn,
• the Replacement Theorem and its consequences.

In the appendix, we provide the proofs of the fundamental results about basis and dimension for subspaces of Rp

that we are going to state.

1. Questions about the notion of basis for a general subspace of Rn.
We can (and should) ask several questions about the notion of basis for a general subspace, say, V, of Rn over the
reals.
Question (1).
Is it guaranteed that V has a basis over the reals?
Answer.

(a) When V = Rn, the answer is yes. But what if V ̸= Rn?
(b) If V is itself the span of some k linearly independent column vectors, say, u1,u2, · · · ,uk, over the reals, then,

by definition, these k column vectors u1,u2, · · · ,uk, certainly constitute a basis for V over the reals.

But what if V is not already known to be the span of some linearly independent column vectors over the reals?
Question (2). If V has a basis over the reals, how many bases does V have?
Answer.
When V = Rn, the answer is definitely no.
This suggests the answer to this question is many more than one, when V is not the zero subspace of Rn.
In fact, if u1,u2, · · · ,up constitute a basis of V over the reals, then for each choice of non-zero real numbers
α1, α2, · · · , αp, we have a distinct basis of V over the reals, given by α1u1, α2u2, · · · , αpup.

2. In view of the answer to Question (2), we should ask these further questions:—
Question (3).
Is is possible to compare various bases of V over the reals? How can the comparison be done? Can it be done
systematically?
Question (4).
Is there anything common amongst all bases of the same V over the reals?
The ‘Change-of-basis’ Theorem has provided a partial answer to Question (3). But it is relevant only under the
assumption that various bases for V have the same number of column vectors. Now this becomes a matter of concern
of Question (4).
We provide the answers to these questions in the theoretical results below.

3. We start by recalling two things about linear independence for column vectors with n real entries:—

(a) No n+ 1 or more column vectors with n real entries are linearly independent over the reals.
(b) By definition of the notion of basis, every basis for a subspace of Rn over the reals is necessarily made up of

linearly independent column vectors with n real entries.
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Combining these two observations, we have the result below. In plain words, this says that the ‘size’ of a basis for
a subspace of Rn ‘cannot be too large’.
Theorem (1). (Upper bound of number of column vectors in a basis for a subspace of Rn over the
reals.)
Every basis for any subspace of Rn over the reals has at most n column vectors.

4. Theorem (1) can be much sharpened to give the key theoretical result below. This result provides an answer to
Question (1).
Theorem (2). (Existence of basis for an arbitrary non-zero subspace of Rn over the reals.)
Suppose V is a non-zero subspace of Rn over the reals. Then there is a basis for V over the reals which consists of
at least one and at most n column vectors with n real entries.
Remark. The proof of Theorem (2) is provided in the appendix.
Further remark. Theorem (2) does not have any practical application within the scope of this course. Its only
purpose is to guarantee that we can talk about basis for an arbitrary subspace of Rn.

5. We now provide some kind of answer to Question (4).
Theorem (3). (Uniqueness of ‘size’ of various bases of the same subspace of Rn over the reals.)
Any two bases for a subspace of Rn over the reals have the same number of column vectors.
Remark. The proof of Theorem (3) is provided in the appendix.
Further remark. The argument will heavily rely on a theoretical device, known as the Replacement Theorem,
whose statement will be introduced later. The Replacement Theorem can be regarded as the ultimate answer to
Question (3).

6. In the light of the validity of Theorem (2) and Theorem (3), it makes sense to introduce the notion of dimension of
subspace below. In many situation it is what we really need from the consideration of subspaces.
Definition. (Dimension of a subspace of Rn over the reals.)
Let V be a subspace of Rn over the reals.

(1) (Suppose V is the zero subspace of Rn over the reals.) We declare the dimension of {0n} over the reals is 0,
and write dimR({0p}) = 0.

(2) Suppose V is not the zero subspace of Rn over the reals.
We call the number of column vectors belonging to a basis for V over the reals the dimension of V over the
reals.
When such a number is p, we write dimR(V) = p, and we refer to V as a p-dimensional subspace of Rn over the
reals.

7. Comments on the definition for the notion of dimension.

(a) According to Theorem (2), it makes sense to talk about the number of column vectors belonging to a basis for
V over R, because such a basis exists.

(b) According to Theorem (3), it makes sense to refer to such a number as something determined by V (and
introduce the notation dimR(V)), because the numbers of various bases for the same V over the reals are the
same.

(c) According to Theorem (2) again, we know that dimR(V) is an integer between 0 and n.
(d) We may simplify the notation dimR(V) as dim(V), with the understanding that only subspaces over the reals

are involved in the discussion.
8. Immediately following from the definitions for the notions of basis and dimension is the result below about span.

Theorem (4).
Let u1,u2, · · · ,up ∈ Rn.
Suppose u1,u2, · · · ,up are linearly independent over the reals.
Then:—

(a) the inequality p ≤ n holds, and
(b) Span({u1,u2, · · · ,up}) is a p-dimensional subspace of Rn over the reals, with a basis over the reals constituted

by u1,u2, · · · ,up.
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9. Example (1). (Easy illustration of Theorem (4).)

Consider the standard base e
(n)
1 , e

(n)
2 , · · · , e(n)n for Rn.

For each q = 1, 2, · · · , n, the q column vectors e
(n)
1 , e

(n)
2 , · · · , e(n)q constitute a basis for the subspace of Rn which is

Span({e(n)1 , e
(n)
2 , · · · , e(n)q }).

This subspace of Rn is of dimension q.

10. Example (2). (Illustration on Theorem (4).)

(a) Let u1 =

[
2
1
1

]
, u2 =

[
0
−1
1

]
, and W = Span({u1,u2}).

We can verify that u1,u2 are linearly independent over the reals.
Therefore u1,u2 constitute a basis for W over the reals.
Hence dim(W) = 2.

(b) Let u1 =

11
1
1

, u2 =

01
2
3

, and W = Span({u1,u2}).

We can verify that u1,u2 are linearly independent over the reals.
Therefore u1,u2 constitute a basis for W over the reals.
Hence dim(W) = 2.

(c) Let u1 =


2
2
2
1
1

, u2 =


0
0
0
1
1

, u3 =


0
−2
0
−1
1

, and W = Span({u1,u2,u3}).

We can verify that u1,u2,u3 are linearly independent over the reals.
Therefore u1,u2,u3 constitute a basis for W over the reals.
Hence dim(W) = 3.

11. Example (3). (Further illustration on Theorem (4), through null spaces of matrices.)

(a) Let A =

 1 −1 2 −7 −23
3 −2 6 −18 −55
−4 3 −7 23 73
1 2 0 7 33

.

We proceed to solve the homogeneous system LS(A, 04), by applying row operations to obtain a reduced
row-echelon form which is row-equivalent to A:—

A −−−−−→ · · · · · · · · · −−−−−→ A′ =

 1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4

.
It follows that the null space N (A) of A is given by

N (A) = Span ({u1}),

in which u1 is the non-zero column vector (which is read off from A′ and) which is given by

u1 =


−1
−2
−3
−4
1

.
Note that u1 is linearly independent. Then u1 constitutes a basis for N (A) over the reals.
Therefore dim(N (A)) = 1.

(b) Let A =

 1 3 1 −2 1
1 3 2 −3 −3
2 6 1 −2 10
−1 −3 −3 1 −5

.
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We proceed to solve the homogeneous system LS(A, 04), by applying row operations to obtain a reduced
row-echelon form which is row-equivalent to A:—

A −−−−−→ · · · · · · · · · −−−−−→ A′ =

 1 3 0 0 9
0 0 1 0 0
0 0 0 1 4
0 0 0 0 0

.
It follows that the null space N (A) of A is given by

N (A) = Span ({u1,u2}),

in which u1,u2 are the linearly independent column vectors (which are read off from A′ and) which are given
by

u1 =


−3
1
0
0
0

, u2 =


−9
0
0
−4
1

.
Then u1,u2 constitute a basis for N (A) over the reals.
Therefore dim(N (A)) = 2.

(c) Let A =

 0 0 2 3 5 −7
−1 2 1 −1 0 −2
2 −4 −1 3 2 1
3 −6 −1 5 4 0

.

We proceed to solve the homogeneous system LS(A, 04), by applying row operations to obtain a reduced
row-echelon form which is row-equivalent to A:—

A −−−−−→ · · · · · · · · · −−−−−→ A′ =

 1 −2 0 0 0 1
0 0 1 0 1 −2
0 0 0 1 1 −1
0 0 0 0 0 0

.
It follows that the null space N (A) of A is given by

N (A) = Span ({u1,u2,u3}),

in which u1,u2,u3 are the linearly independent column vectors (which are read off from A′ and) which are
given by

u1 =


2
1
0
0
0
0

, u2 =


0
0
−1
−1
1
0

, u3 =


−1
0
2
1
0
1

.
Then u1,u2,u3 constitute a basis for N (A) over the reals.
Therefore dim(N (A)) = 3.

12. A special (and extreme) case in Example (1) deserves to be singled out and stated as a theorem.
Theorem (5).
Rn is an n-dimensional subspace of Rn over the reals.
Proof of Theorem (5).

The n column vectors e
(n)
1 , e

(n)
2 , · · · , e(n)n constitute a basis for Rn over the reals.

13. We can sharpen the result much more:—
Theorem (6).
Rn is the only n-dimensional subspace of Rn over the reals.
Remark. The proof of this result is given in the appendix. The argument relies on the Replacement Theorem,
to be introduced immediately.

14. Theorem (7). (Replacement Theorem.)
Let W be a subspace of Rn over the reals. Let p, q be positive integers.
Let u1,u2, · · · ,up, t1, t2, · · · , tq ∈ W.
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Suppose t1, t2, · · · , tq constitute a basis for W over the reals.
Suppose u1,u2, · · · ,up are linearly independent over the reals.
Then:—

(a) the inequality p ≤ q holds, and
(b) u1,u2, · · · ,up, and some q− p column vectors amongst t1, t2, · · · , tq together, constitute a basis of W over the

reals.
15. We state two theoretical results which follows immediately from the Replacement Theorem. Their proofs are

provided in the appendix.
The first of them is a generalization of the result below that says:—

any p+ 1 or more column vectors belonging to Rp definitely linearly dependent over the reals.

Theorem (8). (Corollary (1) to Theorem (7).)
Let V be a q-dimensional subspace of Rn over the reals.
The statements below hold:—

(a) Let v1,v2, · · · ,vℓ ∈ V. Suppose v1,v2, · · · ,vℓ are linearly independent over the reals.
Then ℓ ≤ q.

(b) For each positive integer k, any q + k column vectors belonging to V are linearly dependent over the reals.

Remark. In plain words, each part of Theorem (8) says that:—

any q + 1 or more column vectors belonging to a q-dimensional subspace of Rn over the reals are definitely
linearly dependent over the reals.

16. Here comes another result that follows from the Replacement Theorem.
Theorem (9). (Corollary (2) to Theorem (7).)
Let W be a q-dimensional subspace of Rn over the reals.
Let u1,u2, · · · ,up ∈ W.
Suppose u1,u2, · · · ,up are linearly independent over the reals.
Then:—

(a) the inequality p ≤ q holds, and
(b) there is some basis for W over real constituted by u1,u2, · · · ,up, and some q − p column vectors belonging to

W.

Remark. This is how part (b) of the conclusion is very often interpreted:—

Given any collection of p linearly independent column vectors in a q-dimensional subspace W of Rn over the
reals, it is possible to ‘extend’ this collection to a basis for W over the reals.

17. The example below partially illustrates the content of the Replacement Theorem, and also suggests how the ‘algebra’
involved in its argument is done. Viewed in another way, this example also illustrates the idea in Theorem (9).
Example (4). (Illustration on the content of the Replacement Theorem, and the idea in Theorem
(9).)

Regard R8 as a subspace of R8 itself over the reals.

We have the standard base for R8, constituted by e
(8)
1 , e

(8)
2 , e

(8)
3 , e

(8)
4 , e

(8)
5 , e

(8)
6 , e

(8)
7 , e

(8)
8 .

For simplicity, we write e
(8)
j as ej for each j.

Let u1 = e1 + e2, u2 = e2 + e3, u3 = e1 + e3, u4 = e4 + e5, u5 = −e4 + e5, u6 = e1 + e2 + e3 + e4 + e5 + e6.

(a) Note that u1,u2,u3,u4,u5,u6 are linearly independent over R6. (Fill in the detail as exercise.)
(b) At a theoretical level, we know from the Replacement Theorem that u1,u2,u3,u4,u5,u6, and 2 appropriate

column vectors from amongst e1, e2, e3, e4, e5, e6, e7, e8 together, constitute a basis for R8 over the reals.
(c) Another way of saying the same thing (but with emphasis shifted) is that we may ‘extend’ u1,u2,u3,u4,u5,u6

to give a basis for Rn over the reals, by incorporating 2 column vectors from amongst e1, e2, e3, e4, e5, e6, e7, e8.
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(d) In practice, for the selection to be done, we need to do some algebra about linear combinations.
The strategy is to obtain a desired basis for R8 from the original basis for R8 by constructing various bases for
R8 with more and more uk’s, and fewer and fewer eℓ’s. At each step, we replace one of the remaining eℓ’s in
the ‘intermediate’ basis with an appropriate uk which is yet to be incorporated.

i. By definition u1 = e1 + e2. —— (⋆1)

Then e1 = u1 − e2. —— (⋆′1)

Using the equalities (⋆1), (⋆
′
1), we deduce that u1, e2, e3, e4, e5, e6, e7, e8 constitute a basis for R8 over the

reals.
ii. By definition u2 = e2 + e3. —— (⋆2)

Then e2 = u2 − e3. —— (⋆′2)

Using the equalities (⋆2), (⋆
′
2), we deduce that u1,u2, e3, e4, e5, e6, e7, e8 constitute a basis for R8 over the

reals.
iii. By definition u3 = e1 + e3.

Note that e1 = u1 − e2 = u1 − (u2 − e3) = u1 − u2 + e3.
Therefore u3 = u1 − u2 + 2e3. —— (⋆2)

Then e3 = −1

2
u1 +

1

2
u2 +

1

2
u3. —— (⋆′3)

Using the equalities (⋆3), (⋆
′
3), we deduce that u1,u2,u3, e4, e5, e6, e7, e8 constitute a basis for R8 over the

reals.
iv. By definition u4 = e4 + e5. —— (⋆4)

Then e4 = u4 − e5. —— (⋆′4)

Using the equalities (⋆4), (⋆
′
4), we deduce that u1,u2,u3,u4, e5, e6, e7, e8 constitute a basis for R8 over the

reals.
v. By definition u5 = −e4 + e5.

Note that e4 = u4 − e5.
Therefore u5 = −u4 + 2e5.—— (⋆5)

Then e5 =
1

2
u4 +

1

2
u5. —— (⋆′5)

Using the equalities (⋆5), (⋆′5), we deduce that u1,u2,u3,u4,u5, e6, e7, e8 constitute a basis for R8 over the
reals.

vi. By definition u6 = e1 + e2 + e3 + e4 + e5 + e6.

After some methodical application (or some clever observation), we deduce u6 =
1

2
u1+

1

2
u2+

1

2
u3+u4+e6.

—— (⋆6)

Then e6 = −1

2
u1 −

1

2
u2 −

1

2
u3 − u4 + u6. —— (⋆6)

Using the equalities (⋆6), (⋆′6), we deduce that u1,u2,u3,u4,u5,u6, e7, e8 constitute a basis for R8 over the
reals.
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