4.4.1 Appendix: Proof of the 'Change-of-basis' Theorem.

0 . The material in this appendix is supplementary.

1. We are going to prove the theoretical result introduced as:-

Theorem (4). ('Change-of-basis' Theorem.)

Let \mathcal{W} be a subspace of \mathbb{R}^{n} over the reals.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ constitute a basis for \mathcal{W} over the reals. Also suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ constitute a basis for \mathcal{W} over the reals.
Define $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{p}\right], V=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{p}\right]$.
Then the statements below hold:-
(a) There exists some unique invertible $(p \times p)$-square matrix S with real entries such that $U=V S$.
(b) Let $\mathbf{x} \in \mathcal{W}$, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}, \beta_{1}, \beta_{2}, \cdots, \beta_{p} \in \mathbb{R}$.

Suppose $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\cdots+\alpha_{p} \mathbf{u}_{p}$ and $\mathbf{x}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\cdots+\beta_{p} \mathbf{v}_{p}$
Then $\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{p}\end{array}\right]=S\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{p}\end{array}\right]$, for the same invertible $(p \times p)$-square matrix S above.
Remark on terminologies. The matrix S, which relates the matrices U, V via the equality $U=V S$, is called the change-of-basis matrix relating the (ordered) basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ for \mathcal{W} to the (ordered) basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ for \mathcal{W}.
2. In the argument for Theorem (4), we will use the result below which links up the notions of linear dependence and linear independence with homogeneous systems of linear equations:-
Lemma ($\#$).
Suppose $\mathbf{z}_{1}, \mathbf{z}_{2}, \cdots, \mathbf{z}_{p}$ are column vectors with n real entries, and Z is the $(n \times p)$-matrix with real entries given by $Z=\left[\mathbf{z}_{1}\left|\mathbf{z}_{2}\right| \cdots \mid \mathbf{z}_{p}\right]$.
Then:-
(a) The statements $(L D),\left(L D_{0}\right)$ are logically equivalent:-
$(L D) \mathbf{z}_{1}, \mathbf{z}_{2}, \cdots, \mathbf{z}_{p}$ are linearly dependent over the reals.
$\left(L D_{0}\right)$ The homogeneous system $\mathcal{L S}\left(Z, \mathbf{0}_{n}\right)$ has some non-trivial solution.
(b) The statements $(L I),\left(L I_{0}\right)$ are logically equivalent:-
(LI) $\mathbf{z}_{1}, \mathbf{z}_{2}, \cdots, \mathbf{z}_{p}$ are linearly independent over the reals.
($L I_{0}$) The homogeneous system $\mathcal{L S}\left(Z, \mathbf{0}_{n}\right)$ has no non-trivial solution.

3. Proof of Theorem (4).

Let \mathcal{W} be a subspace of \mathbb{R}^{n}.
Suppose $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ constitute a basis for \mathcal{W}.
Also suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ constitute a basis for \mathcal{W}.
Define $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{p}\right], V=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{p}\right]$.
(a) [We are going to show that there exists some invertible $(p \times p)$-square matrix S with real entries such that $U=V S$.]
i. [We want to write down some matrix S for which the equality $U=V S$ holds.

Note that for such an equality to make sense, it is necessary for S to be a $(p \times p)$-square matrix in the first place.]
(Recall that $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ constitute a basis for \mathcal{W} over the reals.)
For each $k=1,2, \cdots, p$, since $\mathbf{u}_{k} \in \mathcal{W}$, there exist some $s_{1 k}, s_{2 k}, \cdots, s_{p k} \in \mathbb{R}$ such that $\mathbf{u}_{k}=s_{1 k} \mathbf{v}_{1}+$ $s_{2 k} \mathbf{v}_{2}+\cdots+s_{p k} \mathbf{v}_{p k}$.
We write $\mathbf{s}_{k}=\left[\begin{array}{c}s_{1 k} \\ s_{2 k} \\ \vdots \\ s_{p k}\end{array}\right]$. Then we have $\mathbf{u}_{k}=\left[\begin{array}{l}\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \\ \mathbf{v}_{p}\end{array}\right]\left[\begin{array}{c}s_{1 k} \\ s_{2 k} \\ \vdots \\ s_{p k}\end{array}\right]=V \mathbf{s}_{k}$.
Now define $S=\left[\mathbf{s}_{1}\left|\mathbf{s}_{2}\right| \cdots \mid \mathbf{s}_{p}\right]$. Note that S is a $(p \times p)$-square matrix with real entries. Therefore $U=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{p}\right]=\left[V \mathbf{s}_{1}\left|V \mathbf{s}_{2}\right| \cdots \mid V \mathbf{s}_{p}\right]=V\left[\mathbf{s}_{1}\left|\mathbf{s}_{2}\right| \cdots \mid \mathbf{s}_{p}\right]=V S$.
ii. [We want to write down some matrix T for which the equality $V=U T$ holds.]
(Recall that $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ constitute a basis for \mathcal{W} over the reals.)
For each $\ell=1,2, \cdots, p$, since $\mathbf{v}_{\ell} \in \mathcal{W}$, there exist some $t_{1 \ell}, t_{2 \ell}, \cdots, t_{p \ell} \in \mathbb{R}$ such that $\mathbf{v}_{\ell}=t_{1 \ell} \mathbf{u}_{1}+t_{2 \ell} \mathbf{u}_{2}+$ $\cdots+t_{p \ell} \mathbf{u}_{p \ell}$.
We write $\mathbf{t}_{\ell}=\left[\begin{array}{c}t_{1 \ell} \\ t_{2 \ell} \\ \vdots \\ t_{p \ell}\end{array}\right]$. Repeating the argument above, we also deduce that $\mathbf{v}_{\ell}=U \mathbf{t}_{\ell}$.
We define $T=\left[\mathbf{t}_{1}\left|\mathbf{t}_{2}\right| \cdots \mid \mathbf{t}_{p}\right]$. Note that T is a $(p \times p)$-square matrix with real entries.
Further repeating the argument above, we also deduce that $V=U T$.
iii. [We want to verify that $T S=I_{p}$.]

We have the equalities $U=V S$ and $V=U T$.
Then $U=V S=(U T) S=U(T S)$.
Since S, T are $(p \times p)$-square matrices, $T S$ is also a $(p \times p)$-square matrix.
For each $i, j=1,2, \cdots, p$, denote the j-th column of $T S$ by \mathbf{g}_{j}.
[We want to verify that $\mathbf{g}_{j}=\mathbf{e}_{j}^{(p)}$.]
Note that $U\left(I_{p}-T S\right)=U-U T S=\mathcal{O}_{n \times p}$.
Then, for each $j=1,2, \cdots, p$, the j-th column of $I_{p}-T S$ is $\mathbf{e}_{j}^{(p)}-\mathbf{g}_{j}$.
Then we have $U\left(\mathbf{e}_{j}^{(p)}-\mathbf{g}_{j}\right)=\mathbf{0}_{n}$. Therefore $\mathbf{e}_{j}^{(p)}-\mathbf{g}_{j}$ is a solution of the homogeneous system $\mathcal{L S}\left(U, \mathbf{0}_{n}\right)$.
Since $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ constitute a basis for \mathcal{W} over the reals, $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}$ are linearly independent over the reals.
Then, by Lemma (\sharp), the homogeneous system $\mathcal{L} \mathcal{S}\left(U, \mathbf{0}_{n}\right)$ has no non-trivial solution.
Therefore $\mathbf{e}_{j}^{(p)}-\mathbf{g}_{j}=\mathbf{0}_{n}$. Hence $\mathbf{g}_{j}=\mathbf{e}_{j}^{(p)}$.
It follows that $T S=I_{p}$.
iv. Repeating the argument above, but starting with the equalities $V=U T=(V S) T=V(S T)$, we also deduce the equality $S T=I_{p}$ (from the assumption that $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ constitute a basis for \mathcal{W} over the reals, and with the help of Lemma (\sharp)).
It follows that S, T are invertible, and they are matrix inverses of each other.
v. [We want to verify that S is the only invertible $(p \times p)$-square matrix for which the equality $U=V S$ holds.] Let \widetilde{S} be an invertible $(p \times p)$-square matrix. Suppose the equality $U=V \widetilde{S}$ holds.
For each $i, j=1,2, \cdots, p$, denote the j-th column of \widetilde{S} by $\widetilde{\mathbf{s}}_{j}$, and the (i, j)-th entry of \widetilde{S} by $\widetilde{s}_{i j}$.
[We want to verify that $\widetilde{\mathbf{s}}_{j}=\mathbf{s}_{j}$ for each $j=1,2, \cdots, p$.]
We have the equalities $U=V S$ and $U=V \widetilde{S}$. Then $V(S-\widetilde{S})=\mathcal{O}_{n \times p}$.
For each $j=1,2, \cdots, p$, the j-th column of $S-\widetilde{S}$ is $\mathbf{s}_{j}-\widetilde{s}_{j}$.
Then $V\left(\mathbf{s}_{j}-\widetilde{s}_{j}\right)=\mathbf{0}_{n}$. Therefore $\mathbf{s}_{j}-\widetilde{s}_{j}$ is a solution of the homogeneous system $\mathcal{L S}\left(V, \mathbf{0}_{n}\right)$.
Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ constitute a basis for \mathcal{W} over the reals, $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ are linearly independent over the reals.
Then, by Lemma (\sharp), the homogeneous system $\mathcal{L} \mathcal{S}\left(V, \mathbf{0}_{n}\right)$ has no non-trivial solution.
Therefore $\mathbf{s}_{j}-\widetilde{s}_{j}=\mathbf{0}_{n}$. Hence $\widetilde{s}_{j}=\mathbf{s}_{j}$.
It follows that $\widetilde{S}=S$.
(b) Let $\mathbf{x} \in \mathcal{W}$, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}, \beta_{1}, \beta_{2}, \cdots, \beta_{p} \in \mathbb{R}$.

Suppose $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\cdots+\alpha_{p} \mathbf{u}_{p}$ and $\mathbf{x}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\cdots+\beta_{p} \mathbf{v}_{p}$.
Write $\mathbf{a}=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{p}\end{array}\right], \mathbf{b}=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{p}\end{array}\right]$.
We have $\mathbf{x}=U \mathbf{a}$ and $\mathbf{x}=V \mathbf{b}$.
Then $V \mathbf{b}=\mathbf{x}=U \mathbf{a}=V S \mathbf{a}$.
Therefore $V(\mathbf{b}-S \mathbf{a})=\mathbf{0}_{n}$.
Hence $\mathbf{b}-S \mathbf{a}$ is a solution of the homogeneous system $\mathcal{L S}\left(V, \mathbf{0}_{n}\right)$.
Again using the linear independence of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$, and applying Lemma (\sharp) again, we deduce the equality $\mathbf{b}-S \mathbf{a}=\mathbf{0}_{p}$.
Then $\mathbf{b}=S \mathbf{a}$.

